http://iet.metastore.ingenta.com
1887

Distortion and impairments mitigation and compensation of single- and multi-band wireless transmitters (invited)

Distortion and impairments mitigation and compensation of single- and multi-band wireless transmitters (invited)

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Transmitter digital domain linearisation solutions are constantly evolving to extract optimum benefits in terms of cost, performance and flexibility. This study highlights the current and futuristic trends in the arena of transmitter system modelling and digital domain compensation for radio frequency distortions of non-linear power amplifiers and wireless transmitters in case of single-band wireless transmitter, which is further extended to a dual-band transmitter. Indeed, the dual-band transmitter results in severe non-linear distortion as compared to the single-band transmitter when operated in concurrent mode, due to the additional inter-modulation products generated by the dual-band transmitted signals. Hence, in addition to the intermodulation products and memory effects exhibited in a single-band transmitter, the cross-modulation effects of the dual-band signals should be compensated for as well in a dual-band transmitter. The effects of the modulator imperfections such as gain and phase imbalances, phase errors and DC offsets and their impact on the feedback loop of a digital predistortion system are also analysed. A thorough comparison between the state-of-the-art behavioural models and their application to digital predistortion technique of power amplifier is presented in terms of performance and complexity. Model performance assessment is discussed through simulation and experimental results for both single- and dual-band systems.

References

    1. 1)
      • 1. Cripps, S.C.: ‘RF power amplifiers for wireless communications’ (Artech House, Norwood, MA, 1999).
    2. 2)
      • 2. Colantonio, P., Giannini, F., Giofrè, R., Member, S., Piazzon, L.: ‘A design technique for concurrent dual-band harmonic tuned power amplifier’, IEEE Trans. Microw. Theory Tech., 2008, 56, (11), pp. 25452555 (doi: 10.1109/TMTT.2008.2004897).
    3. 3)
      • 3. Roblin, P., Myoung, S.K., Chaillot, D., et al: ‘Frequency-selective predistortion linearization of RF power amplifiers’, IEEE Trans. Microw. Theory Tech., 2008, 56, (1), pp. 6576 (doi: 10.1109/TMTT.2007.912241).
    4. 4)
      • 4. Bassam, S.A., Chen, W., Helaoui, M., Ghannouchi, F.M., Feng, Z.: ‘Linearization of concurrent dual-band power amplifier based on 2D-DPD technique’, IEEE Micro. Wirel. Compon. Lett., 2011, 21, (12), pp. 685687 (doi: 10.1109/LMWC.2011.2170669).
    5. 5)
      • 5. Gilabert, P.L., Montoro, G., Vizarreta, P., Berenguer, J.: ‘Digital processing compensation mechanisms for highly efficient transmitter architectures’, IET Microw. Antenna Propag., 2011, 5, (8), pp. 963974 (doi: 10.1049/iet-map.2010.0368).
    6. 6)
      • 6. Ghannouchi, F.M., Hammi, O.: ‘Behavioral modeling and predistortion’, IEEE Microw. Mag., 2009, 10, (7), pp. 5264 (doi: 10.1109/MMM.2009.934516).
    7. 7)
      • 7. Isaksson, M., Wisell, D., Rönnow, D.: ‘A comparative analysis of behavioral models for RF power amplifiers’, IEEE Trans. Microw. Theory Tech., 2006, 54, (1), pp. 348359 (doi: 10.1109/TMTT.2005.860500).
    8. 8)
      • 8. Muhonen, K.J., Kavehrad, M., Krishnamoorthy, R.: ‘Look-up table techniques for adaptive digital predistortion: a development and comparison’, IEEE Trans. Veh. Technol., 2000, 49, (9), pp. 19952002 (doi: 10.1109/25.892601).
    9. 9)
      • 9. Ghannouchi, F.M., Taringou, F., Kwan, A., Hammi, O., Malhamé, R.: ‘Identification of true-static predistorter using a sine wave and accurate quantification of memory effects in broadband wireless transmitters’, IET Commun., 2011, 5, (9), pp. 12681274 (doi: 10.1049/iet-com.2010.0600).
    10. 10)
      • 10. Liu, T., Boumaiza, S., Helaoui, M., Hammi, O., Ghannouchi, F.M.: ‘Accurate identification of static nonlinear properties of wideband RF power amplifiers’ (ICMMT, 2008), pp. 13511354.
    11. 11)
      • 11. Vuolevi, J.H.K., Rahkonen, T., Manninen, J.P.: ‘Measurement technique for characterizing memory effects in RF power amplifiers’, IEEE Trans. Microw. Theory Tech., 2008, 56, (1), pp. 13511354.
    12. 12)
      • 12. Schetzen, M.: ‘The Volterra & Wiener theories of nonlinear systems’ (Wiley, New York, 1989).
    13. 13)
      • 13. Kim, J., Konstantinou, K.: ‘Digital predistortion of wideband signals based on power amplifier model with memory’, Electron. Lett., 2001, 37, (23), pp. 14171418 (doi: 10.1049/el:20010940).
    14. 14)
      • 14. Gilabert, P.L., Montoro, G., Bertran, E.: ‘On the Wiener and Hammerstein models for power amplifier predistortion’. Asia-Pacific Microwave Conf. Proc. (APMC), 2005, pp. 14.
    15. 15)
      • 15. Crama, P., Rolain, Y.: ‘Broad-band measurement and identification of a Wiener–Hammerstein model for an RF amplifier’. IEEE Automated RF Techniques Group(ARFTG) Conf., 2002, pp. 4957.
    16. 16)
      • 16. Taringou, F., Hammi, O., Srinivasan, B., Malhame, R., Ghannouchi, F.M.: ‘Behaviour modelling of wideband RF transmitters using Hammerstein–Wiener models’, IET Circuits Devices Syst., 2010, 4, (4), pp. 282290 (doi: 10.1049/iet-cds.2009.0258).
    17. 17)
      • 17. Ghannouchi, F.M., Taringou, F., Hammi, O.: ‘A dual branch Hammerstein–Wiener architecture for behavior modeling of wideband RF transmitters’. IEEE MTT-S Int. Microwave Symp. (IMS2010), 2010, pp. 16921695.
    18. 18)
      • 18. Liu, T., Member, S., Boumaiza, S., Ghannouchi, F.M.: ‘Deembedding static nonlinearities and accurately identifying and modeling memory effects in wide-band RF transmitters’, IEEE Trans. Microw. Theory Tech., 2005, 53, (11), pp. 35783587 (doi: 10.1109/TMTT.2005.857105).
    19. 19)
      • 19. Liu, T., Boumaiza, S., Ghannouchi, F.M.: ‘Augmented Hammerstein predistorter for linearization of broad-band wireless transmitters’, IEEE Trans. Microw. Theory Tech., 2006, 54, (4), pp. 13401349 (doi: 10.1109/TMTT.2006.871230).
    20. 20)
      • 20. Hammi, O., Ghannouchi, F.M.: ‘Twin nonlinear two-box models for power amplifiers and transmitters exhibiting memory effects with application to digital predistortion’, IEEE Microw. Wirel. Compon. Lett., 2009, 19, (8), pp. 530532 (doi: 10.1109/LMWC.2009.2024848).
    21. 21)
      • 21. Younes, M., Ghannouchi, F.M.: ‘An accurate predistorter based on a feedforward Hammerstein structure’, IEEE Trans. Broadcast., 2012, 58, (3), pp. 454461 (doi: 10.1109/TBC.2012.2191690).
    22. 22)
      • 22. Younes, M., Hammi, O., Kwan, A., Ghannouchi, F.M.: ‘An accurate complexity-reduced ‘PLUME’ model for behavioral modeling and digital predistortion of RF power amplifiers’, IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 13971405 (doi: 10.1109/TIE.2010.2049717).
    23. 23)
      • 23. Zhu, A., Pedro, J.C., Brazil, T.J.: ‘Dynamic deviation reduction-based Volterra behavioral modeling of RF power amplifiers’, IEEE Trans. Microw. Theory Tech., 2006, 54, (12), pp. 43234332 (doi: 10.1109/TMTT.2006.883243).
    24. 24)
      • 24. Morgan, D.R., Ma, Z., Kim, J., Zierdt, M.G., Pastalan, J.: ‘A generalized memory polynomial model for digital predistortion of RF power amplifiers’, IEEE Trans. Signal Process., 2006, 54, (10), pp. 38523860 (doi: 10.1109/TSP.2006.879264).
    25. 25)
      • 25. Haykin, S.: ‘Neural networks: a comprehensive foundation’ (Prentice-Hall, Upper Saddle River, NJ, 1999).
    26. 26)
      • 26. Xu, J., Yagoub, M.C.E., Ding, R., Zhang, Q.: ‘Neural-based dynamic modeling of nonlinear microwave circuits’, IEEE Trans. Microw. Theory Tech., 2002, 50, (4), pp. 27692780.
    27. 27)
      • 27. Narendra, K.S., Parthasarathy, K.: ‘Identification and control of dynamical systems using neural networks’, IEEE Trans. Neural Netw., 1990, 1, (1), pp. 427. (doi: 10.1109/72.80202).
    28. 28)
      • 28. Luongvinh, D., Kwon, Y.: ‘Behavioral modeling of power amplifiers using fully recurrent neural networks’, IEEE MTT-S Int. Dig., 2005, pp. 19791982.
    29. 29)
      • 29. Wang, F., Zhang, Q.: ‘Knowledge-based neural models for microwave design’, IEEE Trans. Microw. Theory Tech., 2006, 45, (12), pp. 23332343 (doi: 10.1109/22.643839).
    30. 30)
      • 30. Ibnkahla, M., Sombrin, J., Castanie, F., Bershad, N.J.: ‘Neural networks for modeling nonlinear memoryless communication channels’, IEEE Trans. Commun., 1997, 45, (12), pp. 768771 (doi: 10.1109/26.602580).
    31. 31)
      • 31. Liu, T., Boumaiza, S., Ghannouchi, F.M.: ‘Dynamic behavioral modeling of 3G power amplifiers using real-valued time-delay neural networks’, IEEE Trans. Microw. Theory Tech., 2004, 52, (3), pp. 10251033 (doi: 10.1109/TMTT.2004.823583).
    32. 32)
      • 32. Rawat, M., Rawat, K., Ghannouchi, F.M.: ‘Adaptive digital predistortion of wireless power amplifiers/transmitters using dynamic real-valued focused time-delay line neural networks’, IEEE Trans. Microw. Theory Tech., 2010, 58, (1), pp. 95104 (doi: 10.1109/TMTT.2009.2036334).
    33. 33)
      • 33. Isaksson, M., Wisell, D., Rönnow, D.: ‘Wide-band dynamic modeling of power amplifiers using radial-basis function neural networks’, IEEE Trans. Microw. Theory Tech., 2005, 53, (11), pp. 34223428 (doi: 10.1109/TMTT.2005.855742).
    34. 34)
      • 34. Rawat, M., Ghannouchi, F.M.: ‘Distributed spatiotemporal neural network for nonlinear dynamic transmitter modeling and adaptive digital predistortion’, IEEE Trans Instrum. Meas., 2012, 61, (3), pp. 595608 (doi: 10.1109/TIM.2011.2170915).
    35. 35)
      • 35. Li, M., Hoover, L., Gard, K.G., Steer, M.B.: ‘Behavioural modelling and impact analysis of physical impairments in quadrature modulators’, IET Microw. Antennas Propag., 2010, 4, (12), pp. 21442154 (doi: 10.1049/iet-map.2009.0278).
    36. 36)
      • 36. Cavers, J.K.: ‘The effect of quadrature modulator and demodulator errors on adaptive digital predistorters for amplifier linearization’, IEEE Trans. Veh. Technol., 1997, 46, (2), pp. 456466 (doi: 10.1109/25.580784).
    37. 37)
      • 37. Zhan, P., Qin, K., Cai, S.: ‘Joint compensation model for memory power amplifier and frequency-dependent nonlinear IQ impairments’, Electron. Lett., 2011, 47, (25), pp. 1382 (doi: 10.1049/el.2011.2996).
    38. 38)
      • 38. Bassam, S.A., Boumaiza, S., Ghannouchi, F.M.: ‘Block-wise estimation of and compensation for I/Q imbalance in direct-conversion transmitters’, IEEE Trans. Signal Process., 2009, 57, (12), pp. 49704973 (doi: 10.1109/TSP.2009.2026598).
    39. 39)
      • 39. Mingyu, L., Liu, J., Jiang, Y., Feng, W.: ‘Complex-Chebyshev functional link neural network behavioral model for broadband wireless power amplifiers’, IEEE Trans. Microw. Theory Tech., 2012, 60, (6), pp. 19791989 (doi: 10.1109/TMTT.2012.2189239).
    40. 40)
      • 40. Rawat, K., Rawat, M., Ghannouchi, F.M.: ‘Compensating I–Q imperfections in hybrid RF/digital predistortion with an adapted lookup table implemented in an FPGA’, IEEE Trans. Circuits Syst. II, 2010, 57, (5), pp. 389393 (doi: 10.1109/TCSII.2010.2047326).
    41. 41)
      • 41. Kim, Y., Jeong, E., Lee, Y.H.: ‘Adaptive compensation for power amplifier nonlinearity in the presence of quadrature modulation/demodulation errors’, IEEE Trans. Signal Process., 2007, 55, (9), pp. 47174721 (doi: 10.1109/TSP.2007.896261).
    42. 42)
      • 42. Anttila, L., Händel, P., Valkama, M.: ‘Joint mitigation of power amplifier and I/Q modulator impairments in broadband direct-conversion transmitters’, IEEE Trans. Microw. Theory Tech., 2010, 58, (4), pp. 730738 (doi: 10.1109/TMTT.2010.2041579).
    43. 43)
      • 43. Rawat, M., Ghannouchi, F.M.: ‘A mutual distortion and impairment compensator for wideband direct-conversion transmitters’, IEEE Trans. Broadcast., 2012, 58, (12), pp. 168177 (doi: 10.1109/TBC.2012.2189338).
    44. 44)
      • 44. Golub, G.H., Loan, C.F.V.: ‘Matrix computations’ (The John and Hopkins Press Ltd., Baltimore, 1996, 3rd edn.).
    45. 45)
      • 45. Raich, R., Zhou, G.T.: ‘Orthogonal polynomials for complex Gaussian processes’, IEEE Trans. Signal Process., 2004, 52, (10), pp. 27882797 (doi: 10.1109/TSP.2004.834400).
    46. 46)
      • 46. Jebali, C., Boulejfen, N., Rawat, M., Gharsallah, A., Ghannouchi, F.M.: ‘Modeling of wideband radio frequency power amplifiers using Zernike polynomials’, Int. J. RF Microw. Comput. Aided Engng., 2012, 22, (3), pp. 289296 (doi: 10.1002/mmce.20575).
    47. 47)
      • 47. Ding, L., Zhou, G.T.: ‘Effects of even-order nonlinear terms on power amplifier modeling and predistortion linearization’, IEEE Trans. Veh. Technol., 2004, 53, (5), pp. 156162 (doi: 10.1109/TVT.2003.822001).
    48. 48)
      • 48. Raich, R., Qian, H., Zhou, G.T.: ‘Orthogonal polynomials for power amplifier modeling and predistorter design’, IEEE Trans. Veh. Technol., 2004, 53, (5), pp. 14681479 (doi: 10.1109/TVT.2004.832415).
    49. 49)
      • 49. Hammi, O., Younes, M., Ghannouchi, F.M.: ‘Metrics and methods for benchmarking of RF transmitter behavioral models with application to the development of a hybrid memory polynomial model’, IEEE Trans. Broadcast., 2010, 56, (3), pp. 350357 (doi: 10.1109/TBC.2010.2052408).
    50. 50)
      • 50. Zhou, D., Debrunner, V.E.: ‘Novel adaptive nonlinear predistorters based on the direct learning algorithm’, IEEE Trans. Signal Process., 2007, 55, (1), pp. 120133. (doi: 10.1109/TSP.2006.882058).
    51. 51)
      • 51. Tehrani, A.S., Cao, H., Afsardoost, S., Eriksson, T., Isaksson, M., Fager, C.: ‘A comparative analysis of the complexity/accuracy tradeoff in power amplifier behavioral models’’, IEEE Trans. on Microw. Theory Tech., 2010, 58, (6), pp. 15101520 (doi: 10.1109/TMTT.2010.2047920).
    52. 52)
      • 52. Li, X., Chen, W., Zhang, Z., Feng, Z., Tang, X., Mouthaan, K.: ‘A concurrent dual-band Doherty power amplifier’. Proc. Asia-Pacific Microwave Conf., 2010, pp. 654657.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2012.0663
Loading

Related content

content/journals/10.1049/iet-map.2012.0663
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address