http://iet.metastore.ingenta.com
1887

Dynamically integrated spatiotemporal-based trajectory planning and control for autonomous vehicles

Dynamically integrated spatiotemporal-based trajectory planning and control for autonomous vehicles

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In the literature, the intensive research effort has been made on the trajectory planning for autonomous vehicles, while the integration of the trajectory planner with the trajectory controller is less focused. This study proposes the spatiotemporal-based trajectory planner and controller by a two-level dynamically integrated structure. In the upper level, the best trajectory is selected among a group of candidate time-parameterised trajectories, while the target vehicle ending position and velocity can be satisfied. Then the planned trajectory is evaluated by checking the feasibility when the actual vehicle dynamic motion constraints are considered. After that, the lower level trajectory controller based on the vehicle dynamics model will control the vehicle to follow the desired trajectory. Numerical simulations are used to validate the effectiveness of the proposed approach, where the scenario of an intersection and the scenario of overtaking are applied to show that the proposed trajectory controller can successfully achieve the control targets. In addition, compared with the potential field method, the proposed method based on the four-wheel independent steering and four-wheel independent driving electric vehicle shows great advantages in guaranteeing the vehicle handling and stability.

References

    1. 1)
      • 1. Bureau of Transportation Statistics: ‘National transportation statistics’, U.S. Dept. Transportation, 2014.
    2. 2)
      • 2. Bureau of Infrastructure Transport and Regional Economics: ‘Road death Australia’, Canberra ACT, Australia, 2014.
    3. 3)
      • 3. He, J., McCarley, J.S., Kramer, A.F.: ‘Lane keeping under cognitive load: performance changes and mechanisms’, Hum. Factors: J. Hum. Factors Ergon. Soc., 2014, 56, pp. 414426.
    4. 4)
      • 4. Werling, M., Kammel, S., Ziegler, J., et al: ‘Optimal trajectories for time-critical street scenarios using discretised terminal manifolds’, Int. J. Rob. Res., 2011, 31, (3), pp. 346359.
    5. 5)
      • 5. National Highway Traffic Safety Administration: ‘Preliminary statement of policy concerning automated vehicles’, 2013, pp. 114.
    6. 6)
      • 6. Yang, S., Wang, W., Liu, C., et al: ‘Feature analysis and selection for training an end-to-end autonomous vehicle controller using the deep learning approach’. 2017 IEEE Intelligent Vehicles Symp. (IV), Redondo Beach, CA, USA, 2017, pp. 10331038.
    7. 7)
      • 7. Ohn-Bar, E., Trivedi, M. M.: ‘Are all objects equal? Deep spatio-temporal importance prediction in driving videos’, Pattern Recognit., 2017, 64, pp. 425436.
    8. 8)
      • 8. Sallab, A. E., Abdou, M., Perot, E., et al: ‘Deep reinforcement learning framework for autonomous driving’, Electron. Imaging, 2017, 19, pp. 7076.
    9. 9)
      • 9. Wang, F. Y., Zheng, N. N., Cao, D., et al: ‘Parallel driving in CPSS: a unified approach for transport automation and vehicle intelligence’, IEEE/CAA J. Autom. Sin., 2017, 4, (4), pp. 577587.
    10. 10)
      • 10. Wang, F. Y.: ‘Parallel control and management for intelligent transportation systems: concepts, architectures, and applications’, IEEE Trans. Intell. Transp. Syst., 2010, 11, (3), pp. 630638.
    11. 11)
      • 11. Li, X., Sun, Z., Cao, D., et al: ‘Real-time trajectory planning for autonomous urban driving: framework, algorithms, and verifications’, IEEE/ASME Trans. Mechatronics, 2016, 21, (2), pp. 740753.
    12. 12)
      • 12. Werling, M., Gindele, T., Jagszent, D., et al: ‘A robust algorithm for handling moving traffic in urban scenarios’. IEEE Intelligent Vehicles Symp., Eindhoven, The Netherlands, 2008, pp. 11081112.
    13. 13)
      • 13. Lapierre, L., Zapata, R., Lepinay, P.: ‘Combined path-following and obstacle avoidance control of a wheeled robot’, Int. J. Rob. Res., 2007, 26, (4), pp. 361375.
    14. 14)
      • 14. Soetanto, D., Lapierre, L., Pascoal, A.: ‘Adaptive, nonsingular path following control of dynamic wheeled robot’. 42nd IEEE Conf. on Decision and Control, Maui, Hawaii, USA, 2003, pp. 17651770.
    15. 15)
      • 15. Ge, S.S., Cui, Y.J.: ‘Dynamic motion planning for mobile robots using potential field method’, Auton. Robots, 2002, 13, pp. 207222.
    16. 16)
      • 16. Fletcher, L., Teller, S., Olson, E., et al: ‘The MIT-Cornell collision and why it happened’, J. Field Robot., 2008, 25, (10), pp. 775807.
    17. 17)
      • 17. Kuwata, Y, Fiore, G.A., Teo, J., et al: ‘Motion planning for urban driving using RRT’. Int. Conf. on Intelligent Robots and Systems, Nice, France, 2008, pp. 16811686.
    18. 18)
      • 18. Likhachev, M., Ferguson, D.: ‘Planning long dynamically feasible maneuvers for autonomous vehicles’, Int. J. Rob. Res., 2009, 28, (8), pp. 933945.
    19. 19)
      • 19. Pivtoraiko, M., Kelly, A.: ‘Efficient constrained path planning via search in state lattices’. Int. Symp. on Artificial Intelligence, Robotics, and Automation in Space, Munich, Germany, 2005, pp. 17.
    20. 20)
      • 20. LaValle, M.: ‘Rapidly-exploring random trees: A new tool for path planning’, Technical Report, Computer Science Department, Iowa State University, Iowa, USA, 1998.
    21. 21)
      • 21. Howard, T., Kelly, A.: ‘Optimal rough terrain trajectory generation for wheeled mobile robots’, Int. J. Rob. Res., 2007, 26, (2), pp. 141166.
    22. 22)
      • 22. Montemerlo, M., Becker, J., Bhat, S., et al: ‘Junior: The Stanford entry in the Urban Challenge’, J. Field Robot., 2008, 25, (9), pp. 569597.
    23. 23)
      • 23. Elbanhawi, M., Simic, M., Jazar, R.: ‘In the passenger seat: investigating ride comfort measures in autonomous cars’, IEEE Intell. Transp. Syst. Mag., 2015, 7, (3), pp. 417.
    24. 24)
      • 24. Werling, M., Ziegler, J., Kammel, S., et al: ‘Optimal trajectory generation for dynamic street scenarios in a Frenét Frame’. 2010 IEEE Int. Conf. on Robotics and Automation, Anchorage Convention District, USA, 2010, pp. 987993.
    25. 25)
      • 25. Li, X., Sun, Z., Cao, D., et al: ‘Development of a new integrated local trajectory planning and tracking control framework for autonomous ground vehicles’, Mech. Syst. Signal Process. ., 2017, 87, pp. 118137.
    26. 26)
      • 26. Katrakazas, C., Quddus, M., Chen, W-H, et al: ‘Real-time motion planning methods for autonomous on-road driving: state-of-the-art and future research directions’, Transp. Res. C, 2015, 60, pp. 416442.
    27. 27)
      • 27. Dugoff, H., Fancher, P.S., Segel, L.: ‘An analysis of tire traction properties and their influence on vehicle dynamic performance’, SAE 700377, 1970, pp. 12191243.
    28. 28)
      • 28. Levinson, J., Montemerlo, M., Thrun, S.: ‘Map-based precision vehicle localization in urban environments’, in ‘Robotics: science and systems’, vol. 4, (MIT Press, Cambridge, MA, USA, 2007), p. 1.
    29. 29)
      • 29. Levinson, J, Thrun, S.: ‘Robust vehicle localization in urban environments using probabilistic maps’. Proc. IEEE Int. Conf. on Robotics and Automation, Anchorage, AK, USA, 2010, pp. 43724378.
    30. 30)
      • 30. Boada, B., Boada, M., Díaz, V.: ‘Fuzzy-logic applied to yaw moment control for vehicle stability,Veh. Syst. Dyn., 2005, 43, pp. 753770.
    31. 31)
      • 31. Park, H., Gerdes, J.C.: ‘Optimal tyre force allocation for trajectory tracking with an over-actuated vehicle’. 2015 IEEE Intelligent Vehicles Symp. (IV), Seoul, Korea, 2015, pp. 10321037.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2018.5306
Loading

Related content

content/journals/10.1049/iet-its.2018.5306
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address