http://iet.metastore.ingenta.com
1887

Complex network model for railway timetable stability optimisation

Complex network model for railway timetable stability optimisation

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Recent studies on train timetable are paying more and more attention to the dynamic characteristics. Among the dynamic characteristics, stability is a most important one, which determines the capacity of the train timetable to tolerate the disturbance in the train operation process. In this study, the authors build a complex network model to describe the train timetable, making it possible to utilise the complex network theory to study the train timetable optimisation problem. Then, they design the solving algorithm to solve the problem. Finally, they present a computing case to prove the approach to improve the train timetable stability is practical. The approach proposed in this study can generate referential advice for the railway operators design the train timetable.

References

    1. 1)
      • 1. Goverde, R.M.P., Hansen, I.A.: ‘Performance indicators for railway timetables’. Proc. IEEE Int. Conf. Intelligent Rail Transportation, Beijing, China, August 2013, pp. 301306.
    2. 2)
      • 2. Andersson, E., Peterson, A., Törnquist Krasemann, J.: ‘Introducing a new quantitative measure of railway timetable robustness based on critical points’. Proc. 5th Int. Conf. on Railway Operations Modelling and Analysis, Copenhagen, Denmark, January 2013, pp. 119.
    3. 3)
      • 3. Cacchiani, V., Toth, P.: ‘Nominal and robust train timetabling problems’, Eur. J. Oper. Res., 2012, 219, (3), pp. 727737.
    4. 4)
      • 4. Schittenhelm, B.: ‘Planning with timetable supplements in railway timetables’. Proc. Annual Transport Conf. at Aalborg University, Aalborg, Denmark, 2011, pp. 118.
    5. 5)
      • 5. Meng, X., Jia, L.: ‘Train timetable stability evaluation based on analysis of interior and exterior factors information entropy’, Appl. Math. Inf. Sci., 2014, 8, (3), pp. 13191325.
    6. 6)
      • 6. Lee, T.H., Park, J.H., Xu, S.: ‘Relaxed conditions for stability of time–varying delay systems’, Automatica, 2017, 75, pp. 1115.
    7. 7)
      • 7. Asad, H.S., Yuen, R.K.K., Huang, G.: ‘Multiplexed real–time optimization of HVAC systems with enhanced control stability’, Appl. Energy, 2017, 187, pp. 640651.
    8. 8)
      • 8. Erceg, I., Sumina, D., Tusun, S., et al: ‘Power system stabilizer based on pointwise min–norm control law’, Electr. Power Syst. Res., 2017, 143, pp. 215224.
    9. 9)
      • 9. Coviello, N.: ‘Modelling periodic operations on single track lines, timetable design and stability evaluation’, Res. Transp. Econ., 2015, 54, pp. 214.
    10. 10)
      • 10. Xavier, D., Xavier, G., Joaquín, R.: ‘Stability evaluation of a railway timetable at station level’, Eur. J. Oper. Res., 2009, 195, (3), pp. 780790.
    11. 11)
      • 11. Goverde, M.P.: ‘Railway timetable stability analysis using max–plus system theory’, Transp. Res. Part B, 2007, 41, (2), pp. 179201.
    12. 12)
      • 12. Hansen, I.A.: ‘Station capacity and stability of train operations’. Proc. 7th Int. Conf. on Computers in Railways, Bologna, Italy, September 2000, pp. 809816.
    13. 13)
      • 13. Niu, H., Zhou, X., Gao, R.: ‘Train scheduling for minimizing passenger waiting time with time-dependent demand and skip–stop patterns, nonlinear integer programming models with linear constraints’, Transp. Res. B, 2015, 76, pp. 117135.
    14. 14)
      • 14. Engelhardt–Funke, O., Kolonko, M.: ‘Analysing stability and investments in railway networks using advanced evolutionary algorithm’, Int. Trans. Oper., 2004, 11, (4), pp. 381394.
    15. 15)
      • 15. Cicerone, S., D'Angelo, G., Di Stefano, G., et al: ‘Recoverable robust timetabling for single delay, complexity and polynomial algorithms for special cases’, J. Comb. Optim., 2009, 18, (3), pp. 229257.
    16. 16)
      • 16. Cicerone, S., Di Stefano, G., Schachtebeck, M., et al: ‘Multi–stage recovery robustness for optimization problems, a new concept for planning under disturbances’, Inf. Sci., 2012, 190, pp. 107126.
    17. 17)
      • 17. Liebchen, C., Stille, S.: ‘Delay resistant timetabling’, Public Transp., 2009, 1, (1), pp. 5572.
    18. 18)
      • 18. D'Angelo, G., Di Stefano, G., Alfredo, N., et al: ‘Recoverable robust timetables, an algorithmic approach on trees’, IEEE Trans. Comput., 2011, 60, (3), pp. 433446.
    19. 19)
      • 19. Carey, M., Carville, S.: ‘Testing schedule performance and reliability for train stations’, J. Oper. Res. Soc., 2000, 51, (6), pp. 666682.
    20. 20)
      • 20. Vromans, M.J.C.M., Dekker, R., Kroon, L.G.: ‘Reliability and heterogeneity of railway services’, Eur. J. Oper. Res., 2006, 172, pp. 647665.
    21. 21)
      • 21. Luethi, M., Medeossi, G., Nash, A.: ‘Structure and simulation evaluation of an integrated real-time rescheduling system for railway networks’, Netw. Spat. Econ., 2009, 9, (1), pp. 103121.
    22. 22)
      • 22. Zhao, M.: ‘Railway network evaluation based on complex network analysis’, Adv. Appl. Math., 2016, 5, (3), pp. 560566.
    23. 23)
      • 23. Lee, W.H., Yen, L.H., Chou, C.M.: ‘A delay root cause discovery and timetable adjustment model for enhancing the punctuality of railway services’, Transp. Res. C, Emerg. Technol., 2016, 73, pp. 4964.
    24. 24)
      • 24. Ferreira, L., Higgins, A.: ‘Modeling reliability of train arrival times’, J. Transp. Eng., 1996, 122, (6), pp. 14420.
    25. 25)
      • 25. Corman, F., Quaglietta, E., Goverde, R.M.P.: ‘Automated real-time railway traffic control: an experimental analysis of reliability, resilience and robustness’, Transp. Plan. Technol., 2018, 41, (4), pp. 21447.
    26. 26)
      • 26. Feng, J., Li, X., Mao, B., et al: ‘Weighted complex network analysis of the Beijing subway system: train and passenger flows’, Physica A, 2017, 474, pp. 213223.
    27. 27)
      • 27. Valério, D., Lopes, A.M., Machado, J.A.T.: ‘Entropy analysis of a railway network's complexity’, Entropy, 2016, 18, (11), p. 388.
    28. 28)
      • 28. Shao, F., Li, K.: ‘A complex network model for analyzing railway accidents based on the maximal information coefficient’, Commun. Theor. Phys., 2016, 66, (4), p. 459.
    29. 29)
      • 29. Francesco, R., Gabriele, M., Stefano, R.: ‘Complex railway systems: capacity and utilisation of interconnected networks’, Eur. Transp. Res. Rev., 2016, 8, (4), p. 29.
    30. 30)
      • 30. Aken, S.V., Bešinović, N., Goverde, R.M.P.: ‘Designing alternative railway timetables under infrastructure maintenance possessions’, Transp. Res. B, Methodol., 2017, 98, pp. 224238.
    31. 31)
      • 31. Lee, Y., Lu, L.S., Wu, M.L., et al: ‘Balance of efficiency and robustness in passenger railway timetables’, Transp. Res. B, Methodol., 2017, 97, pp. 142156.
    32. 32)
      • 32. Burggraeve, S., Vansteenwegen, P.: ‘Optimization of supplements and buffer times in passenger robust timetabling’, J. Rail Transp. Plan. Manage., 2017, 7, (3), pp. 171186.
    33. 33)
      • 33. Meng, X., Jia, L., Qin, Y. ‘Train timetable optimizing and rescheduling based on improved particle swarm algorithm’, Transp. Res. Rec., 2010, 2197, pp. 7179.
    34. 34)
      • 34. Meng, X., Cui, B., Jia, L., et al: ‘Networked timetable stability improvement based on a bilevel optimization programming model’, Math. Probl. Eng., 2014, pp. 110.
    35. 35)
      • 35. Meng, X., Jia, L., Xie, J., et al: ‘Complex characteristic analysis of passenger train flow network’. Proc. Chinese Control and Decision Conf., Xuzhou, China, May 2010, pp. 25332536.
    36. 36)
      • 36. Meng, X.: ‘Controllability of train service network’, Math. Probl. Eng., 2015, pp. 18.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2018.5257
Loading

Related content

content/journals/10.1049/iet-its.2018.5257
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address