http://iet.metastore.ingenta.com
1887

Roadside unit location for information propagation promotion on two parallel roadways with a general headway distribution

Roadside unit location for information propagation promotion on two parallel roadways with a general headway distribution

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, an analytical model for roadside unit (RSU) location is proposed. The objective of the model is to promote information propagation on two parallel roadways in vehicular ad hoc networks. The information propagation is achieved through multi-hop vehicle-to-vehicle and vehicle-to-infrastructure communication. The relationship between the information travel time from one RSU to another and the distance between the two RSUs are derived. The RSU location problem is formulated as a shortest path problem and then as an integer linear programming. The proposed model is applicable for traffic flow with a general vehicle headway distribution. A detailed comparison between the proposed model and an existing RSU location model is conducted through Monto Carlo simulation experiments under different vehicle headway distributions, traffic densities, budget sizes, and road separation distances. The results indicate that the proposed model outperforms the existing model in all cases. Moreover, it is shown that it is necessary to consider the general vehicle headway distribution and road separation in RSU locations that are focused on information propagation promotion.

References

    1. 1)
      • 1. Li, L., Wang, F.Y.: ‘Cooperative driving at blind crossings using intervehicle communication’, IEEE Trans. Veh. Technol., 2006, 55, (6), pp. 17121724.
    2. 2)
      • 2. Yang, K., Guler, S.I., Menendez, M.: ‘Isolated intersection control for various levels of vehicle technology: conventional, connected, and automated vehicles’, Transp. Res. C, Emerg. Technol., 2016, 72, pp. 109129.
    3. 3)
      • 3. Wang, Y., Zheng, J., Mitton, N.: ‘Delivery delay analysis for roadside unit deployment in vehicular ad hoc networks with intermittent connectivity’, IEEE Trans. Veh. Technol., 2016, 65, (10).
    4. 4)
      • 4. Abdrabou, A., Zhuang, W.: ‘Probabilistic delay control and road side unit placement for vehicular ad hoc networks with disrupted connectivity’, IEEE J. Sel. Areas Commun., 2011, 29, (1), pp. 129139.
    5. 5)
      • 5. Sou, S.I., Tonguz, O.K.: ‘Enhancing VANET connectivity through roadside units on highways’, IEEE Trans. Veh. Technol., 2011, 60, (8), pp. 35863602.
    6. 6)
      • 6. Wu, T.J., Liao, W., Chang, C.J.: ‘A cost-effective strategy for road-side unit placement in vehicular networks’, IEEE Trans. Commun., 2012, 60, (8), pp. 22952303.
    7. 7)
      • 7. Aslam, B., Zou, C.C.: ‘Optimal roadside units placement along highways’. Consumer Communications and Networking Conf. (CCNC), Las Vegas, NV USA, 2011, pp. 814815.
    8. 8)
      • 8. Li, P., Huang, X., Fang, Y., et al: ‘Optimal placement of gateways in vehicular networks’, IEEE Trans. Veh. Technol., 2007, 56, (6), pp. 34213430.
    9. 9)
      • 9. Trullols, O., Fiore, M., Casetti, C., et al: ‘Planning roadside infrastructure for information dissemination in intelligent transportation systems’, Comput. Commun., 2010, 33, (4), pp. 432442.
    10. 10)
      • 10. Lin, P.C.: ‘Optimal roadside unit deployment in vehicle-to-infrastructure communications’. Int. Conf. on ITS Telecommunications, Taipei, Taiwan, 2012, pp. 796800.
    11. 11)
      • 11. Xie, B., Chen, Y., Xu, M.: ‘Roadside infrastructure placement for information dissemination in urban ITS based on probabilistic model’. Int. Conf. on Electronics, Communications and Control, Ningbo, China, 2012, pp. 19931997.
    12. 12)
      • 12. Cavalcante, E.S., Aquino, A.L.L., Pappa, G.L., et al: ‘Roadside unit deployment for information dissemination in a VANET: An evolutionary approach’. Proc. of the 14th Annual Conf. Companion on Genetic and Evolutionary Computation, Philadelphia, PA, USA, 2012, pp. 2734.
    13. 13)
      • 13. Campolo, C., Cozzetti, H.A., Molinaro, A., et al: ‘Vehicular connectivity in urban scenarios: effectiveness and potential of roadside, moving WAVE providers and hybrid solutions’, EURASIP J. Wirel. Commun. Netw., 2011, 2011, (1), pp. 110.
    14. 14)
      • 14. Barrachina, J., Garrido, P., Fogue, M., et al: ‘Road side unit deployment: a density-based approach’, IEEE Intell. Transp. Syst. Mag., 2013, 5, (3), pp. 3039.
    15. 15)
      • 15. Rios, M., Marianov, V., Pérez, M.: ‘Locating fixed roadside units in a bus transport network for maximum communications probability’, Transp. Res. Part C Emerg. Technol., 2015, 53, pp. 3547.
    16. 16)
      • 16. Shioda, S.: ‘Connectivity of vehicular ad hoc networks in downtown scenarios’. Int. Conf. on Ad Hoc Networks, Paris, France, 2011, pp. 177192.
    17. 17)
      • 17. Chi, J., Do, S., Park, S.: ‘Traffic flow-based roadside unit allocation strategy for VANET’. 2016 Int. Conf. on Big Data and Smart Computing (BigComp), Hong Kong, China, 2016, pp. 245250.
    18. 18)
      • 18. Lee, J., Kim, C.M.: ‘A roadside unit placement scheme for vehicular telematics networks’. Advances in Computer Science and Information Technology, Miyazaki, Japan, 2010, pp. 196202.
    19. 19)
      • 19. Wang, S.W., Chang, M.Y.: ‘Roadside units allocation algorithms for certificate update in VANET environments’. The 17th Asia Pacific Conf. on Communications, Sabah, Malaysia, 2011, pp. 472477.
    20. 20)
      • 20. Balouchzahi, N.M., Fathy, M., Akbari, A.: ‘A graph-based model for RSUs deployment in vehicular networks by considering urban and network limitations and QoS requirements of service advertisement and discovery’, KSII Trans. Internet Inf. Syst., 2015, 9, (5), pp. 16621681.
    21. 21)
      • 21. Aslam, B., Amjad, F., Zou, C.C.: ‘Optimal roadside units placement in urban areas for vehicular networks’. 2012 IEEE Symp. on Computers and Communications (ISCC), Cappadocia, Turkey, 2012, pp. 000423000429.
    22. 22)
      • 22. Ho, W.H., Leung, K.K., Polak, J.W.: ‘Stochastic model and connectivity dynamics for VANETs in signalized road systems’, IEEE/ACM Trans. Netw., 2011, 19, (1), pp. 195208.
    23. 23)
      • 23. Umer, T., Ding, Z., Honary, B.: ‘Connectivity dynamics under microscopic parameters in signalized heterogeneous traffic flow for VANET’, 2011. Contribution in Book/report/proceedings.
    24. 24)
      • 24. Neelakantan, P.C., Babu, A.V.: ‘Network connectivity probability of linear vehicular ad hoc networks on two-way street’, Commun. Netw., 2012, 4, (4), pp. 332341.
    25. 25)
      • 25. Jin, W.L., Recker, W.: ‘An analytical model of multihop connectivity of inter-vehicle communication systems’, IEEE Trans. Wirel. Commun., 2010, 9, (1), pp. 106112.
    26. 26)
      • 26. Jin, W.L., Wang, B.: ‘Connectivity of vehicular ad hoc networks with continuous node distribution patterns’ (University of California Transportation Center, CA, USA, 2010).
    27. 27)
      • 27. Durrani, S., Zhou, X., Chandra, A.: ‘Effect of vehicle mobility on connectivity of vehicular ad hoc networks’. Vehicular Technology Conf. Fall (VTC 2010-Fall), Ottawa, Canada, 2010, pp. 15.
    28. 28)
      • 28. Wang, X.: ‘Modeling the process of information relay through inter-vehicle communication’, Transp. Res. B, Methodol., 2007, 41, (6), pp. 684700.
    29. 29)
      • 29. Yousefi, S., Altman, E., El-Azouzi, R., et al: ‘Analytical model for connectivity in vehicular ad hoc networks’, IEEE Trans. Veh. Technol., 2008, 57, (6), pp. 33413356.
    30. 30)
      • 30. Wang, B.X., Adams, T.M., Jin, W., et al: ‘The process of information propagation in a traffic stream with a general vehicle headway: a revisit’, Transp. Res. C, Emerg. Technol., 2010, 18, (3), pp. 367375.
    31. 31)
      • 31. Ukkusuri, S., Du, L.: ‘Geometric connectivity of vehicular ad hoc networks: analytical characterization’, Transp. Res. C, Emerg. Technol., 2008, 16, (5), pp. 615634.
    32. 32)
      • 32. Wang, B.X., Yin, K., Qin, X.: ‘An approximate Bernoulli process for information propagation along two parallel roads’, Transp. Res. C, Emerg. Technol., 2011, 19, (3), pp. 469484.
    33. 33)
      • 33. Yin, K., Wang, X.B., Zhang, Y.: ‘Vehicle-to-vehicle connectivity on two parallel roadways with a general headway distribution’, Transp. Res. C, Emerg. Technol., 2013, 29, pp. 8496.
    34. 34)
      • 34. Wang, X.B., Yin, K., Yan, X.: ‘Vehicle-to-vehicle connectivity on parallel roadways with large road separation’, Transp. Res. C, Emerg. Technol., 2015, 52, pp. 93101.
    35. 35)
      • 35. Wang, X., Yin, K., Zhang, Y.: ‘A Markov process for information propagation via inter-vehicle communication along two parallel roads’, IEEE Trans. Wirel. Commun., 2012, 11, pp. 865868.
    36. 36)
      • 36. Bettstetter, C.: ‘On the minimum node degree and connectivity of a wireless multihop network’. Int. Symp. on Mobile Ad Hoc Networking Computing, Lausanne, Switzerland, 2002, pp. 8091.
    37. 37)
      • 37. Sahoo, P.K., Chiang, M.J., Wu, S.L.: ‘Connectivity modeling of vehicular ad hoc networks in signalized city roads’. Int. Conf. on Parallel Processing Workshops, Taipei, Taiwan, 2011, pp. 2226.
    38. 38)
      • 38. Ho, W.H., Leung, K.K., Polak, J.W.: ‘Connectivity dynamics for vehicular ad-hoc networks in signalized road systems’. Teletraffic Congress, 2009. ITC 21 2009, Paris, France, 2009, pp. 18.
    39. 39)
      • 39. Ho, W.H., Leung, K.K., Polak, J.W.: ‘Stochastic traffic and connectivity dynamics for vehicular ad-hoc networks in signalized road systems’. IEEE, Conf. on Local Computer Networks, Zurich, Switzerland, 2009, pp. 332335.
    40. 40)
      • 40. Ng, M.W., Waller, S.T.: ‘A static network level model for the information propagation in vehicular ad hoc networks’, Transp. Res. C, Emerg. Technol., 2010, 18, (3), pp. 393407.
    41. 41)
      • 41. Danczyk, A., Liu, H.X.: ‘A mixed-integer linear program for optimizing sensor locations along freeway corridors’, Transp. Res. B, Methodol., 2011, 45, (1), pp. 208217.
    42. 42)
      • 42. Zhang, Z., Mao, G., Anderson, B.D.O.: ‘On the information propagation process in mobile vehicular ad hoc networks’, IEEE Trans. Veh. Technol., 2011, 60, (5), pp. 23142325.
    43. 43)
      • 43. Luttinen, R.T.: ‘Statistical analysis of vehicle time headways’ (Helsinki University of Technology, Aalto, Finland, 1996).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2018.5208
Loading

Related content

content/journals/10.1049/iet-its.2018.5208
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address