http://iet.metastore.ingenta.com
1887

Low-cost triboelectric sensor for speed measurement and weight estimation of vehicles

Low-cost triboelectric sensor for speed measurement and weight estimation of vehicles

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents and tests the accuracy of a low-cost triboelectric sensor for speed measurement and weight estimation of passenger vehicles in motion. Polytetrafluoroethylene and aluminium films are employed as sensing elements for generating voltage pulses due to movement of vehicles in real time. A number of road tests by 880 and 1020 kg cars in the speed range from 10 to 60 kmph show that the sensor is effective for measuring speeds with more than 95% accuracy and 3% mean absolute percentage error. For weight estimation, it is found that the voltage signals obtained from sensor due to impact between the tires of the vehicles and sensor varies linearly with speed ensuring the reliability of the sensor. On road experimental results reveal that the weight can be predicted from voltage signals by maintaining a database of different class of vehicles. The results and the overall concept indicate that the triboelectric sensor and associated wireless setup is promising for smart traffic-monitoring applications at a very low cost.

References

    1. 1)
      • 1. Suffla, S., Niekerk, A.V., Seedat, M.: ‘Crime, violence and injury prevention in South Africa: developments and challenges’, Medical Research Council-University of South Africa Crime, 2004.
    2. 2)
      • 2. Schoor, O.V., Niekerk, J.L.V., Grobbelaar, B.: ‘Mechanical failures as a contributing cause to motor vehicle accidents – South Africa’, Accid. Anal. Prev., 2001, 33, pp. 713721.
    3. 3)
      • 3. Tiwari, R.R., Ganveer, G.B.: ‘A study on human risk factors in non-fatal road traffic accidents at Nagpur’, Indian J. Public Health, 2008, 52, (4), pp. 197199.
    4. 4)
      • 4. Levenberg, E.: ‘Estimating vehicle speed with embedded inertial sensors’, Transp. Res. C, Emerg. Technol., 2014, 46, pp. 300308.
    5. 5)
      • 5. Yu, J., Zhu, H., Han, H., et al: ‘Senspeed: sensing driving conditions to estimate vehicle speed in urban environments’, IEEE Trans. Mob. Comput., 2016, 15, (1), pp. 202216.
    6. 6)
      • 6. López-Valcarce, R., Mosquera, C., Pérez-González, F.: ‘Estimation of road vehicle speed using two omnidirectional microphones: a maximum likelihood approach’, EURASIP J. Adv. Signal Process., 2004, 8, pp. 10501077.
    7. 7)
      • 7. Oh, S., Ritchie, S., Oh, C.: ‘Real-time traffic measurement from single loop inductive signatures’, Transp. Res. Rec.: J. Transp. Res. Board, 2002, 1804, pp. 98106.
    8. 8)
      • 8. Adnan, M.A., Sulaiman, N., Zainuddin, N.I., et al: ‘Vehicle speed measurement technique using various speed detection instrumentation’, Proc. Business Engineering and Industrial Applications Colloquium (BEIAC 2013), IEEE, Langkawi, Malaysia, April 2013, pp. 668672.
    9. 9)
      • 9. Sun, Z., Bebis, G., Miller, R.: ‘On-road vehicle detection: a review’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, (5), pp. 694711.
    10. 10)
      • 10. Lin, H.Y., Li, K.J., Chang, C.H.: ‘Vehicle speed detection from a single motion blurred image’, Image Vis. Comput., 2008, 26, (10), pp. 13271337.
    11. 11)
      • 11. Lan, J., Li, J., Hu, G., et al: ‘Vehicle speed measurement based on gray constraint optical flow algorithm’, Optik-J. Light Electron. Opt., 2014, 125, (1), pp. 289295.
    12. 12)
      • 12. Gregg, IIIE.S., Mittler, J.A.: ‘Combined radar detector, speed measuring device and printer for verifying vehicle speed’, United States Patent5,510,793, April1996.
    13. 13)
      • 13. Ross, M.: ‘Radar detector responsive to vehicle speed’, United States Patent5,977,884, November1999.
    14. 14)
      • 14. Hardin, L.C., Nash, L.V.: ‘Electro-optical range finding and speed detection system’, United States Patent5,642,299, June1997.
    15. 15)
      • 15. Makukhin, K.: ‘Vehicle identification and speed detection method and system’, United States patent App.12/269,060, May2010.
    16. 16)
      • 16. Nelson, L.: ‘Traffic enforcement device’, United States Patent5,515,042, May1996.
    17. 17)
      • 17. Dillon, B.N., Griffen, N.C., Weihs, M.E.: ‘Load cell’, United States patent4,185,547, March1989.
    18. 18)
      • 18. Clark, D.J.: ‘A comparison of bending plate and piezoelectric weigh-in-motion systems’, PhD thesis, Montana State University-Bozeman, 2002.
    19. 19)
      • 19. Jacob, B., Véronique Feypell-de La, B.: ‘Improving truck safety: potential of weigh-in-motion technology’, IATSS Res., 2010, 34, (1), pp. 915.
    20. 20)
      • 20. Zhang, J., Lu, Y., Lu, Z., et al: ‘A new smart traffic monitoring method using embedded cement-based piezoelectric sensors’, Smart Mater. Struct., 2015, 24, (2), p. 025023.
    21. 21)
      • 21. Mazurek, B., Janiczek, T., Chmielowiec, J.: ‘Assessment of vehicle weight measurement method using PVDF transducers’, J. Electrostat., 2001, 51, pp. 7681.
    22. 22)
      • 22. Chaklader, A.C.: ‘Vehicle weight and cargo load determination using tire pressure’, United States Patent6,449,582, September2002.
    23. 23)
      • 23. Roos, F.: ‘Estimation of weight for a vehicle’, United States Patent9,500,514, November2016.
    24. 24)
      • 24. Carruthers, D., Di Rollo, E.: ‘Vehicle load sensing system’, United States Patent application13/444,970, January2012.
    25. 25)
      • 25. Hang, W., Xie, Y., He, J.: ‘Practices of using weigh-in-motion technology for truck weight regulation in China’, Transp. Policy, 2013, 30, pp. 143152.
    26. 26)
      • 26. Wang, Z.L.: ‘Triboelectric nanogenerators as new energy technology and self-powered sensors – principles, problems and perspectives’, Faraday Discuss., 2015, 176, pp. 447458.
    27. 27)
      • 27. Zhu, G., Peng, B., Chen, J., et al: ‘Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications’, Nano Energy, 2015, 14, pp. 126138.
    28. 28)
      • 28. Ha, M., Park, J., Lee, Y., et al: ‘Triboelectric generators and sensors for self-powered wearable electronics’, ACS Nano, 2015, 9, (4), pp. 34213427.
    29. 29)
      • 29. Invernizzi, F., Dulio, S., Patrini, M., et al: ‘Energy harvesting from human motion: materials and techniques’, Chem. Soc. Rev., 2016, 45, (20), pp. 54555473.
    30. 30)
      • 30. Azad, P., Vaish, R.: ‘Portable triboelectric based wind energy harvester for low power applications’, EPJ. Plus, 2017, 132, (6), p. 253.
    31. 31)
      • 31. Yang, Y., Zhang, H., Chen, J., et al: ‘Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system’, ACS Nano, 2013, 7, (8), pp. 73427351.
    32. 32)
      • 32. Azad, P.: ‘Single and double electrode based Nanogenerators for energy harvesting from different materials’, 4th Int. Conf. on Computing for Sustainable Global Development (INDIACom), Bharati Vidyapeeth's Institute of Computer Applications and Management (BVICAM), Paschim Vihar, New Delhi, India, March 2017, pp. 182185.
    33. 33)
      • 33. Yadav, D., Azad, P.: ‘Design and implementation of robust low cost and low power prototype for generic counting system’, Proc. Int. Conf. Computing, Communication and Automation (ICCCA), Gautam Buddh Nagar, India, 2017, pp. 14931498.
    34. 34)
      • 34. Chaudhary, P., Azad, P.: ‘Demonstration of double electrode vertical-sliding triboelectric generator’, Proc. Int. Conf. Computing, Communication and Automation (ICCCA), Gautam Buddh Nagar, India, 2017, pp. 14831487.
    35. 35)
      • 35. Khushboo Azad, P.: ‘Triboelectric nanogenerator based on vertical contact separation mode for energy harvesting’, Proc. Int. Conf. Computing, Communication and Automation (ICCCA), Gautam Buddh Nagar, India, 2017, pp. 14991502.
    36. 36)
      • 36. Azad, P., Singh, V.P., Vaish, R.: ‘Candle soot-driven performance enhancement in pyroelectric energy conversion’, J. Electron. Mater., 2018, 47, (8), pp. 47214730.
    37. 37)
      • 37. Naik, B.N., Reddy, M.M., Kanungo, S., et al: ‘Speed detection device in road traffic accidents: a realistic approach in India!’, J. Fam. Med. Primary Care, 2016, 5, (3), pp. 741742.
    38. 38)
      • 38. Elvik, R., Christensen, P., Amundsen, A.: ‘Speed and road accidents. An evaluation of the Power Model’, TØI Report 740, 2004.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2018.5187
Loading

Related content

content/journals/10.1049/iet-its.2018.5187
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address