http://iet.metastore.ingenta.com
1887

Stochastic traffic modelling and decentralised signal control based on a state transition probability model

Stochastic traffic modelling and decentralised signal control based on a state transition probability model

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the authors develop a state transition probability model for an isolated intersection on the basis of link-based state transition probability matrix. The state of an intersection is defined as the combination of its input links’ states which represent their respective congestion level by occupancy rate. This way of modelling is further extended to a compact region by likening the region to a virtual node with several virtual input links to avoid dimension expansion. Based on the state transition probability model, the stochastic signal control problem for both intersections and compact regions is formulated as a Markov decision process with the specified definition of state, action, probability and reward. A sensitivity-based policy iteration algorithm is employed to solve the Markov decision process in real-time, which has a great advantage in computational efficiency. The results of the numerical study on a calibrated network of Caohejing District in Shanghai indicate that the authors’ proposed method outperforms the fixed-time and actuated signal control at high loads in terms of many indices and greatly decreases the variability in the traffic performance. In addition, the compact region control can improve the optimisation efficiency while providing similar performance to the intersection control at different loads.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2018.5154
Loading

Related content

content/journals/10.1049/iet-its.2018.5154
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address