http://iet.metastore.ingenta.com
1887

Optimal velocity prediction for fuel economy improvement of connected vehicles

Optimal velocity prediction for fuel economy improvement of connected vehicles

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

With the advancement of vehicle-to-vehicle and vehicle-to-infrastructure technologies, more and more real-time information regarding traffic and transportation system will be available to vehicles. This paper presents the development of a novel algorithm that uses available velocity bounds and powertrain information to generate an optimal velocity trajectory over a prediction horizon. When utilised by a vehicle, this optimal velocity trajectory reduces fuel consumption. The objective of this optimisation problem is to reduce dynamic losses, required tractive force, and completing trip distance with a given travel time. Sequential quadratic programming method is employed for this nonlinearly constrained optimisation problem. When applied to a GM Volt-2, the generated velocity trajectory saves fuel compared to a real-world drive cycle. The simulation results confirm the fuel consumption reduction with the rule-based mode selection and the energy management strategy of a GM Volt 2 model in Autonomie.

References

    1. 1)
      • 1. Groot, N., De Schutter, B., Hellendoorn, H.: ‘Toward system-optimal routing in traffic networks: a reverse Stackelberg game approach’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (1), pp. 2940.
    2. 2)
      • 2. Chen, W., Zhu, S., Li, D.: ‘Van: vehicle-assisted shortest-time path navigation’. The 7th IEEE Int. Conf. on Mobile Ad-hoc and Sensor Systems (IEEE MASS 2010), San Francisco, CA, USA, 2010, pp. 442451.
    3. 3)
      • 3. Hamed, M.M., Almasaeid, H.R., Said, Z.M.B.: ‘Short-term prediction of traffic volume in urban arterials’, J. Transp. Eng., 1995, 121, (3), pp. 249254.
    4. 4)
      • 4. Hu, J., Shao, Y.L., Sun, Z.X., et al: ‘Integrated vehicle and powertrain optimization for passenger vehicles with vehicle-infrastructure communication’, Transp. Res. Part C-Emerg. Technol., 2017, 79, pp. 85102.
    5. 5)
      • 5. Koenders, E., Vreeswijk, J.: ‘Cooperative infrastructure’. Intelligent Vehicles Symp., Eindhoven, Netherlands, 2008.
    6. 6)
      • 6. Amoozadeh, M., Deng, H., Chuah, C.N., et al: ‘Platoon management with cooperative adaptive cruise control enabled by Vanet’, Veh. Commun., 2015, 2, (2), pp. 110123.
    7. 7)
      • 7. Kamal, M.A.S., Mukai, M., Murata, J., et al: ‘Ecological driver assistance system using model-based anticipation of vehicle–road–traffic information’, IET Intell. Transp. Syst., 2010, 4, (4), p. 244.
    8. 8)
      • 8. Moura, S.J., Fathy, H.K., Callaway, D.S., et al: ‘A stochastic optimal control approach for power management in plug-in hybrid electric vehicles’, IEEE Trans. Control Syst. Technol., 2011, 19, (3), pp. 545555.
    9. 9)
      • 9. Haitao, X.: ‘Eco-approach and departure techniques for connected vehicles at signalized traffic intersections’, Electrical Engineering PhD Dissertation, University of California Riverside, 2014.
    10. 10)
      • 10. Gunawan, F.E., Chandra, F.Y.: ‘Optimal averaging time for predicting traffic velocity using floating car data technique for advanced traveler information system’. The 9th Int. Conf. Traffic and Transportation Studies (ICTTS 2014), (Proceedia – Social and Behavioral Sciences, Shaoxing, China, 2014, pp. 566575.
    11. 11)
      • 11. Rios-Torres, J., Malikopoulos, A.A.: ‘A survey on the coordination of connected and automated vehicles at intersections and merging at highway on-ramps’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (5), pp. 10661077.
    12. 12)
      • 12. Engelbrecht, J., Booysen, M.J., Bruwer, F.J., et al: ‘Survey of smartphone-based sensing in vehicles for intelligent transportation system applications’, IET Intell. Transp. Syst., 2015, 9, (10), pp. 924935.
    13. 13)
      • 13. Gonder, J., Earleywine, M., Sparks, W.: ‘Analyzing vehicle fuel saving opportunities through intelligent driver feedback’, SAE Int. J. Passenger Cars – Electron. Electr. Syst., 2012, 5, (2), pp. 450461.
    14. 14)
      • 14. Zhang, F.Q., Xi, J.Q., Langari, R.: ‘Real-time energy management strategy based on velocity forecasts using V2V and V2I communications’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (2), pp. 416430.
    15. 15)
      • 15. Servin, O., Boriboonsomsin, K., Barth, M.: ‘An energy and emissions impact evaluation of intelligent speed adaptation’. 2006 IEEE Intelligent Transportation Systems Conf., Toronto, Canada, 2006, pp. 12571262.
    16. 16)
      • 16. Wu, G.Y., Boriboonsomsin, K., Barth, M.J.: ‘Development and evaluation of an intelligent energy-management strategy for plug-in hybrid electric vehicles’, IEEE Trans. Intell. Transp. Syst., 2014, 15, (3), pp. 10911100.
    17. 17)
      • 17. Katsargyri, G.-E., Kolmanovsky, I.V., Michelini, J., et al: ‘Optimally controlling hybrid electric vehicles using path forecasting’. American Control Conf. IEEE, St. Louis, MO, USA, 2009, pp. 46134617.
    18. 18)
      • 18. Gao, B.Z., Xiang, Y., Chen, H., et al: ‘Optimal trajectory planning of motor torque and clutch slip speed for gear shift of a two-speed electric vehicle’, J. Dyn. Syst. Meas. Control-Trans. ASME, 2015, 137, (6), p. 9.
    19. 19)
      • 19. Sciarretta, A., De Nunzio, G., Ojeda, L.L.: ‘Optimal ecodriving control energy-efficient driving of road vehicles as an optimal control problem’, IEEE Control Syst. Mag., 2015, 35, (5), pp. 7190.
    20. 20)
      • 20. Guo, L., Gao, B.Z., Chen, H.: ‘Online shift schedule optimization of 2-speed electric vehicle using moving horizon strategy’, IEEE-ASME Trans. Mechatron., 2016, 21, (6), pp. 28582869.
    21. 21)
      • 21. Guo, L.L., Gao, B.Z., Gao, Y., et al: ‘Optimal energy management for HEVS in eco-driving applications using bi-level MPC’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (8), pp. 21532162.
    22. 22)
      • 22. Moser, D., Waschl, H., Schmied, R., et al: ‘Short term prediction of a vehicle's velocity trajectory using its’, SAE Int. J. Passenger Cars-Electron. Electr. Syst., 2015, 8, (2), pp. 364370.
    23. 23)
      • 23. Chao, S., Xiaosong, H., Moura, S.J., et al: ‘Velocity predictors for predictive energy management in hybrid electric vehicles’, IEEE Trans. Control Syst. Technol., 2015, 23, (3), pp. 11971204.
    24. 24)
      • 24. Silvas, E., Hereijgers, K., Peng, H., et al: ‘Synthesis of realistic driving cycles with high accuracy and computational speed, including slope information’, IEEE Trans. Veh. Technol., 2016, 65, (6), pp. 41184128.
    25. 25)
      • 25. Ozatay, E., Onori, S., Wollaeger, J., et al: ‘Cloud-based velocity profile optimization for everyday driving: a dynamic-programming-based solution’, IEEE Trans. Intell. Transp. Syst., 2014, 15, (6), pp. 24912505.
    26. 26)
      • 26. Li, S.E., Li, K., Ahn, C., et al: ‘Mechanism of vehicular periodic operation for optimal fuel economy in free-driving scenarios’, IET Intell. Transp. Syst., 2015, 9, (3), pp. 306313.
    27. 27)
      • 27. Vögele, U., Endisch, C.: ‘Predictive vehicle velocity control using dynamic traffic information’, SAE 2016 World Congress and Exhibition, SAE Technical Paper Series, 2016.
    28. 28)
      • 28. Johannesson, L., Asbogard, M., Egardt, B.: ‘Assessing the potential of predictive control for hybrid vehicle powertrains using stochastic dynamic programming’, IEEE Trans. Intell. Transp. Syst., 2007, 8, (1), pp. 7183.
    29. 29)
      • 29. Autonomie, Argonne National Laboratory, 2018, Rev. 16 edn.
    30. 30)
      • 30. Conlon, B.M., Blohm, T., Harpster, M., et al: ‘The next generation ‘Voltec’ extended range EV propulsion system’, SAE Int. J. Altern. Powertrains, 2015, 4, (2), pp. 248259.
    31. 31)
      • 31. Boggs, P.T., Tolle, J.W.: ‘Sequential quadratic programming’, Acta Numer., 1995, 4, pp. 151.
    32. 32)
      • 32. Mark, M.: Muftakhidinov Baurzhan, and Tobias, W., Engauge Digitizer Software, 2018.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2018.5110
Loading

Related content

content/journals/10.1049/iet-its.2018.5110
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address