http://iet.metastore.ingenta.com
1887

Integrated model predictive and torque vectoring control for path tracking of 4-wheel-driven autonomous vehicles

Integrated model predictive and torque vectoring control for path tracking of 4-wheel-driven autonomous vehicles

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, an integrated path tracking control framework is proposed for the independent-driven autonomous electric vehicles. The proposed control scheme includes three parts: the non-linear model predictive path tracking controller, the lateral stability controller, and the optimal torque vectoring controller. Firstly, the upper bound speed limit is regulated based on the known curvature and adhesion coefficient of the road to prevent the tyre saturation. The model predictive controller generates the steering angle and the desired longitudinal force for path tracking. Simultaneously, the lateral stability controller calculates the desired yaw moment to balance the vehicle stability and motility under different situations. Finally, the optimal torque vectoring controller distributes the wheel torques to generate the desired longitudinal force and yaw moment. Three test cases are designed and verified based on a Carsim/Simulink platform to evaluate the control performance. The test results illustrate that the proposed control framework has satisfactory path tracking performance, and the desired balance between vehicle mobility and stability is achieved under different road conditions.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2018.5095
Loading

Related content

content/journals/10.1049/iet-its.2018.5095
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address