Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Fast single shot multibox detector and its application on vehicle counting system

Real-time vehicle detection and counting of multiple types is a difficult problem. To solve this problem, this study presents an efficient method based on single shot detection (SSD) to construct a vehicle detection and counting system. The proposed method named Fast-SSD first combines the Slim ResNet-34 with Single Shot MultiBox Detector. Then the authors limit the location prediction at each cell in the feature map and modify the detection network. When the input size of the picture is 300 × 300, Fast-SSD achieves the accuracy of 76.7 mAP on the PASCAL visual object classes 2007 test set. The network can be implemented at the speed of 20.8 FPS based on the GTX650Ti. Furthermore, they obtain the centre point of each type of vehicle which is detected by the Fast-SSD model in the image and set the virtual loop detectors to specify the detection range. The number of vehicles is calculated when the centre of the vehicle passes the virtual loop detector. Results show that the vehicle detection accuracy achieves 99.3% and the classification accuracy is 98.9%.

References

    1. 1)
      • 17. Girshick, R., Donahue, J., Darrell, T., et al: ‘Rich feature hierarchies for accurate object detection and semantic segmentation’. IEEE Conf. on Computer Vision and Pattern Recognition, Columbus, USA, 2014, pp. 580587.
    2. 2)
      • 30. Fernández-Baldera, A., Buenaposada, J.M., Baumela, L.: ‘BAdacost: multi-class boosting with costs’, Pattern Recognit., 2018, 79, (4), pp. 467479.
    3. 3)
      • 12. Engel, J.I., Martin, J., Barco, R.: ‘A low-complexity vision-based system for real-time traffic monitoring’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (5), pp. 12791288.
    4. 4)
      • 22. Fu C, Y., Liu, W., Ranga, A., et al: ‘DSSD: deconvolutional single shot detector’, arXiv preprint arXiv:1701.06659, 2017.
    5. 5)
      • 3. Iwasaki, Y., Misumi, M., Nakamiya, T.: ‘Robust vehicle detection under various environmental conditions using an infrared thermal camera and its application to road traffic flow monitoring’, Sensors, 2013, 13, (6), p. 7756.
    6. 6)
      • 29. Shen, J., Zuo, X., Li, J., et al: ‘A novel pixel neighborhood differential statistic feature for pedestrian and face detection’, Pattern Recognit., 2017, 63, (4), pp. 127138.
    7. 7)
      • 24. Chen, L.C., Papandreou, G., Kokkinos, I., et al: ‘Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs’, IEEE Trans. Pattern Anal. Mach. Intell., 2018, 40, (4), pp. 834848.
    8. 8)
      • 6. He, K., Zhang, X., Ren, S., et al: ‘Deep residual learning for image recognition’. IEEE Conf. on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016, pp. 770778.
    9. 9)
      • 1. Steux, B., Laurgeau, C., Salesse, L., et al: ‘Fade: a vehicle detection and tracking system featuring monocular color vision and radar data fusion’. Intell. Veh. Symp., Versailles, France, 2002, pp. 632639.
    10. 10)
      • 2. Jo, Y., Jung, I.: ‘Analysis of vehicle detection with WSN-based ultrasonic sensors’, Sensors, 2014, 14, (8), pp. 1405014069.
    11. 11)
      • 16. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ‘ImageNet classification with deep convolutional neural networks’, Int. Conf. on Neural Information Processing Systems, Nevada, USA, 2012, pp. 10971105.
    12. 12)
      • 18. Girshick, R.: ‘Fast R-CNN’. IEEE Int. Conf. on Computer Vision, Santiago, Chile, 2015, pp. 14401448.
    13. 13)
      • 4. Tian, B., Morris, B.T., Tang, M., et al: ‘Hierarchical and networked vehicle surveillance in ITS: a survey’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (1), pp. 2548.
    14. 14)
      • 7. Liu, W., Anguelov, D., Erhan, D., et al: ‘SSD: Single Shot MultiBox Detector’. European Conf. on Computer Vision, Amsterdam, Holland, 2016, pp. 2137.
    15. 15)
      • 27. Jia, Y., Shelhamer, E., Donahue, J., et al: ‘Caffe: convolutional architecture for fast feature embedding’. Proc. ACM Conf. on Multimedia, Orlando, USA, 2014, pp. 675678.
    16. 16)
      • 31. Sochor, J., Juránek, R., Špaňhel, J., et al: ‘Brnocompspeed: review of traffic camera calibration and comprehensive dataset for monocular speed measurement’, arXiv preprint arXiv: 1702.06441, 2017.
    17. 17)
      • 23. Simonyan, K., Zisserman, A.: ‘Very deep convolutional networks for large-scale image recognition’, arXiv preprint arXiv:1409.1556, 2014.
    18. 18)
      • 11. Mandellos, N.A., Keramitsoglou, I., Kiranoudis, C.T.: ‘A background subtraction algorithm for detecting and tracking vehicles’, Expert Syst. Appl., 2011, 38, (3), pp. 16191631.
    19. 19)
      • 13. Cheung, S.S., Kamath, C.: ‘Robust techniques for background subtraction in urban traffic video’. Visual Communications and Image Processing, San Jose, USA, 2004, pp. 881892.
    20. 20)
      • 19. Ren, S., Girshick, R., Girshick, R., et al: ‘Faster R-CNN: towards real-time object detection with region proposal networks’, Int. Conf. Neural Inf. Process. Syst., 2017, 39, (6), pp. 11371149.
    21. 21)
      • 15. Chen, Z., Ellis, T., Velastin, S.A.: ‘Vehicle detection, tracking and classification in urban traffic’, Int. IEEE Conf. Intell. Transp. Syst., Anchorage, USA, 2012, pp. 951956.
    22. 22)
      • 8. Ioffe, S., Szegedy, C.: ‘Batch normalization: accelerating deep network training by reducing internal covariate shift’. Int. Conf. on Machine Learning, Lille, France, 2015, pp. 448456.
    23. 23)
      • 5. Druzhkov, P.N., Kustikova, V.D.: ‘A survey of deep learning methods and software tools for image classification and object detection’, Pattern Recognit. Image Anal., 2016, 26, (1), pp. 915.
    24. 24)
      • 9. Glorot, X., Bengio, Y.: ‘Understanding the difficulty of training deep feed forward neural networks’, J. Mach. Learn. Res., 2010, 9, (1), pp. 249256.
    25. 25)
      • 20. Redmon, J., Divvala, S., Girshick, R., et al: ‘You only look once: unified, real-time object detection’. IEEE Conf. on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016, pp. 779788.
    26. 26)
      • 25. Glorot, X., Bordes, A., Bengio, Y.: ‘Deep sparse rectifier neural networks’. Int. Conf. Artif. Intell. Stat., Ft. Lauderdale, USA, 2011, pp. 315323.
    27. 27)
      • 28. Beltran, J., Guindel, C., Moreno, F.M., et al: ‘Birdnet: a 3D object detection framework from LiDAR information’, arXiv preprint arXiv: 1805.01195, 2018.
    28. 28)
      • 21. Redmon, J., Farhadi, A.: ‘YOLO9000: better, faster, stronger’. IEEE Conf. on Computer Vision and Pattern Recognition, Hawaii, USA, 2017, pp. 65176525.
    29. 29)
      • 14. Cucchiara, R., Grana, C., Piccardi, M., et al: ‘Detecting moving objects, ghosts, and shadows in video streams’, IEEE Trans. Pattern Anal. Mach. Intell., 2003, 25, (10), pp. 13371342.
    30. 30)
      • 26. Russakovsky, O., Deng, J., Su, H., et al: ‘Imagenet large scale visual recognition challenge’, Int. J. Comput. Vis., 2015, 115, (3), pp. 211252.
    31. 31)
      • 10. He, K., Zhang, X., Ren, S., et al: ‘Delving deep into rectifiers: surpassing human-level performance on ImageNet classification’. IEEE Int. Conf. on Computer Vision, Santiago, Chile, 2015, pp. 10261034.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2018.5005
Loading

Related content

content/journals/10.1049/iet-its.2018.5005
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address