access icon free Deep learning methods in transportation domain: a review

Recent years have seen a significant amount of transportation data collected from multiple sources including road sensors, probe, GPS, CCTV and incident reports. Similar to many other industries, transportation has entered the generation of big data. With a rich volume of traffic data, it is challenging to build reliable prediction models based on traditional shallow machine learning methods. Deep learning is a new state-of-the-art machine learning approach which has been of great interest in both academic research and industrial applications. This study reviews recent studies of deep learning for popular topics in processing traffic data including transportation network representation, traffic flow forecasting, traffic signal control, automatic vehicle detection, traffic incident processing, travel demand prediction, autonomous driving and driver behaviours. In general, the use of deep learning systems in transportation is still limited and there are potential limitations for utilising this advanced approach to improve prediction models.

Inspec keywords: traffic engineering computing; road traffic; learning (artificial intelligence); Big Data

Other keywords: machine learning methods; CCTV; GPS; incident reports; big data generation; automatic vehicle detection; transportation domain; deep learning systems; transportation data; road sensors; transportation network representation; driver behaviours; traffic signal control; travel demand prediction; traffic data; deep learning methods; traffic incident processing; probe; autonomous driving; traffic flow forecasting

Subjects: Other DBMS; Traffic engineering computing; Knowledge engineering techniques; Data handling techniques

References

    1. 1)
      • 15. Xiong, H.Y., Alipanahi, B., Lee, L.J., et al: ‘The human splicing code reveals new insights into the genetic determinants of disease’, Science, 2015, 347, (6218), p. 1254806.
    2. 2)
      • 46. Ke, J., Zheng, H., Yang, H., et al: ‘Short-term forecasting of passenger demand under on-demand ride services: a spatio-temporal deep learning approach’, Transp. Res. C Emerg. Technol., 2017, 85, pp. 591608.
    3. 3)
      • 18. Simonyan, K., Zisserman, A.: ‘Very deep convolutional networks for large-scale image recognition’. arXiv preprint arXiv:1409.1556, 4 September 2014.
    4. 4)
      • 26. Huang, W., Song, G., Hong, H., et al: ‘Deep architecture for traffic flow prediction: deep belief networks with multitask learning’, IEEE Trans. Intell. Transp. Syst., 2014, 15, (5), pp. 21912201.
    5. 5)
      • 2. Nguyen, H., Cai, C., Chen, F.: ‘Automatic classification of traffic incident's severity using machine learning approaches’, IET Intell. Transp. Syst., 2017, 11, (10), pp. 615623.
    6. 6)
      • 7. LeCun, Y., Bengio, Y., Hinton, G.: ‘Deep learning’, Nature, 2015, 521, (7553), pp. 436444.
    7. 7)
      • 31. Polson, N.G., Sokolov, V.O.: ‘Deep learning for short-term traffic flow prediction’, Transp. Res. C Emerg. Technol., 2017, 79, pp. 17.
    8. 8)
      • 32. Zhao, Z., Chen, W., Wu, X., et al: ‘LSTM network: a deep learning approach for short-term traffic forecast’, IET Intell. Transp. Syst., 2017, 11, (2), pp. 6875.
    9. 9)
      • 47. Zhu, X., Li, J., Liu, Z., et al: ‘Location deployment of depots and resource relocation for connected car-sharing systems through mobile edge computing’, Int. J. Distrib. Sens. Netw., 2017, 13, (6), p. 1550147717711621.
    10. 10)
      • 33. Balaji, P.G., German, X., Srinivasan, D.: ‘Urban traffic signal control using reinforcement learning agents’, IET Intell. Transp. Syst., 2010, 4, (3), pp. 177188.
    11. 11)
      • 49. Xu, J., Rahmatizadeh, R., Bölöni, L., et al: ‘Real-time prediction of taxi demand using recurrent neural networks’, IEEE Trans. Intell. Transp. Syst., 2017, pp. 110.
    12. 12)
      • 5. Jahangiri, A., Rakha, H., Dingus, T.A.: ‘Predicting red-light running violations at signalized intersections using machine learning techniques’. Transportation Research Board 94th Annual Meeting, 2015(No. 15-2910).
    13. 13)
      • 1. Soysal, M., Schmidt, E.G.: ‘Machine learning algorithms for accurate flow-based network traffic classification: evaluation and comparison’, Perform. Eval., 2010, 67, (6), pp. 451467.
    14. 14)
      • 12. Hinton, G., Deng, L., Yu, D., et al: ‘Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups’, IEEE Signal Process. Mag., 2012, 29, (6), pp. 8297.
    15. 15)
      • 34. Prashanth, L.A., Bhatnagar, S.: ‘Reinforcement learning with function approximation for traffic signal control’, IEEE Trans. Intell. Transp. Syst., 2011, 12, (2), pp. 412421.
    16. 16)
      • 36. Genders, W., Razavi, S.: ‘Using a deep reinforcement learning agent for traffic signal control’. arXiv preprint arXiv:1611.01142, 3 November 2016.
    17. 17)
      • 11. Bordes, A., Chopra, S., Weston, J.: ‘Question answering with subgraph embeddings’. arXiv preprint arXiv:1406.3676, 14 June 2014.
    18. 18)
      • 17. Graves, A., Mohamed, A.R., Hinton, G.: ‘Speech recognition with deep recurrent neural networks’. 2013 IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), Vancouver, Canada, 26 May 2013, pp. 66456649.
    19. 19)
      • 41. Zhou, Y., Cheung, N.-M.: ‘Vehicle classification using transferable deep neural network features’. arXiv, vol. 1601, 2016.
    20. 20)
      • 57. Huval, B., Wang, T., Tandon, S., et al: ‘An empirical evaluation of deep learning on highway driving’. arXiv preprint arXiv:1504.01716, 7 April 2015.
    21. 21)
      • 52. Baek, J., Sohn, K.: ‘Deep-learning architectures to forecast bus ridership at the stop and stop-to-stop levels for dense and crowded bus networks’, Appl. Artif. Intell., 2016, 30, (9), pp. 861885.
    22. 22)
      • 24. Fouladgar, M., Parchami, M., Elmasri, R., et al: ‘Scalable deep traffic flow neural networks for urban traffic congestion prediction’. arXiv preprint arXiv:1703.01006, 3 March 2017.
    23. 23)
      • 54. Chen, Q., Song, X., Yamada, H., et al: ‘Learning deep representation from big and heterogeneous data for traffic accident inference’. AAAI, Toronto, Ontario, Canada, 12 February 2016, pp. 338344.
    24. 24)
      • 58. Hadsell, R., Erkan, A., Sermanet, P., et al: ‘Deep belief net learning in a long-range vision system for autonomous off-road driving’. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2008. IROS 2008, Nice, France, 22 September 2008, pp. 628633.
    25. 25)
      • 53. Bengio, Y.: ‘Learning deep architectures for AI’, Trends Mach. Learn., 2009, 2, (1), pp. 127.
    26. 26)
      • 23. Ma, X., Yu, H., Wang, Y., et al: ‘Large-scale transportation network congestion evolution prediction using deep learning theory’, PLoS ONE, 2015, 10, (3), p. e0119044.
    27. 27)
      • 44. Adu-Gyamfi, Y.O., Asare, S.K., Sharma, A., et al: ‘Automated vehicle recognition with deep convolutional neural networks’, 2017.
    28. 28)
      • 51. Liu, L., Chen, R.C.: ‘A MRT daily passenger flow prediction model with different combinations of influential factors’. 2017 31st Int. Conf. Advanced Information Networking and Applications Workshops (WAINA), Taipei, Taiwan, 27 March 2017, pp. 601605.
    29. 29)
      • 27. Hinton, G.E., Osindero, S., Teh, Y.W.: ‘A fast learning algorithm for deep belief nets’, Neural Comput., 2006, 18, (7), pp. 15271554.
    30. 30)
      • 39. Li, L., Lv, Y., Wang, F.Y.: ‘Traffic signal timing via deep reinforcement learning’, IEEE/CAA J. Autom. Sin., 2016, 3, (3), pp. 247254.
    31. 31)
      • 28. Caruana, R.: ‘Multitask learning’. Machine learning, 1997, 28, (1), pp. 4175.
    32. 32)
      • 8. Farabet, C., Couprie, C., Najman, L., et al: ‘Learning hierarchical features for scene labeling’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (8), pp. 19151929.
    33. 33)
      • 13. Sainath, T.N., Mohamed, A.R., Kingsbury, B., et al: ‘Deep convolutional neural networks for LVCSR’. 2013 IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), Vancouver, Canada, 26 May 2013, pp. 86148618.
    34. 34)
      • 45. Cheng, Q., Liu, Y., Wei, W., et al: ‘Analysis and forecasting of the day-to-day travel demand variations for large-scale transportation networks: a deep learning approach’. Proc. Annual Meeting of the Transportation Research Board, Washington, DC, USA, January 2017.
    35. 35)
      • 43. Wang, H., Cai, Y., Chen, L.: ‘A vehicle detection algorithm based on deep belief network’, Sci. World J., 2014, 2014, pp. 17.
    36. 36)
      • 56. Wan, J., Wang, D., Hoi, S.C., et al: ‘Deep learning for content-based image retrieval: A comprehensive study’. Proc. 22nd ACM Int. Conf. Multimedia, Orlando, FL, USA, 3 November 2014, pp. 157166.
    37. 37)
      • 30. Smith, B.L., Williams, B.M., Oswald, R.K.: ‘Comparison of parametric and nonparametric models for traffic flow forecasting’, Transp. Res. C Emerg. Technol., 2002, 10, (4), pp. 303321.
    38. 38)
      • 55. Chen, C., Xiang, H., Qiu, T., et al: ‘A rear-end collision prediction scheme based on deep learning in the Internet of vehicles’, J. Parallel Distrib. Comput., 2017, 117, pp. 192204.
    39. 39)
      • 40. Konoplich, G.V., Putin, E.O., Filchenkov, A.A.: ‘Application of deep learning to the problem of vehicle detection in UAV images’. XIX IEEE Int. Conf. Soft Computing and Measurements (SCM), St. Petersburg, Russia, 2016, pp. 46.
    40. 40)
      • 21. Sarikaya, R., Hinton, G.E., Deoras, A.: ‘Application of deep belief networks for natural language understanding’, IEEE/ACM Trans. Audio Speech Lang. Process. (TASLP), 2014, 22, (4), pp. 778784.
    41. 41)
      • 20. Gehring, J., Miao, Y., Metze, F., et al: ‘Extracting deep bottleneck features using stacked auto-encoders’. 2013 IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), Vancouver, Canada, 26 May 2013, pp. 33773381.
    42. 42)
      • 50. Zhu, L., Laptev, N.: ‘Deep and confident prediction for time series at uber’. 2017 IEEE Int. Conf. Data Mining Workshops (ICDMW), New Orleans, Louisiana, 18 November 2017, pp. 103110.
    43. 43)
      • 10. Collobert, R., Weston, J., Bottou, L., et al: ‘Natural language processing (almost) from scratch’, J. Mach. Learn. Res., 2011, 12, pp. 24932537.
    44. 44)
      • 16. Schmidhuber, J.: ‘Deep learning in neural networks: an overview’, Neural Netw., 2015, 61, pp. 85117.
    45. 45)
      • 19. Goodfellow, I., Mirza, M., Courville, A., et al: ‘Multi-prediction deep Boltzmann machines’. Advances in Neural Information Processing Systems, Lake Tahoe, CA, USA, 2013, pp. 548556.
    46. 46)
      • 48. Yao, H., Wu, F., Ke, J., et al: ‘Deep multi-view spatial-temporal network for taxi demand prediction’. Proc. Thirty-Second AAAI Conf. Artificial Intelligence (AAAI 2018), New Orleans, LA, February 2018.
    47. 47)
      • 14. Leung, M.K., Xiong, H.Y., Lee, L.J., et al: ‘Deep learning of the tissue-regulated splicing code’, Bioinformatics, 2014, 30, (12), p. i1219.
    48. 48)
      • 29. Jin, F., Sun, S.: ‘Neural network multitask learning for traffic flow forecasting’. IEEE Int. Joint Conf. Neural Networks, 2008. IJCNN 2008. (IEEE World Congress on Computational Intelligence), Hong Kong, China, 1 June 2008, pp. 18971901.
    49. 49)
      • 37. Mnih, V., Kavukcuoglu, K., Silver, D., et al: ‘Human-level control through deep reinforcement learning’, Nature, 2015, 518, (7540), pp. 529533.
    50. 50)
      • 42. Moussa, G.S.: ‘Vehicle type classification with geometric and appearance attributes’, Int. J. Civil Archit. Sci. Eng., 2014, 8, (3), pp. 273278.
    51. 51)
      • 6. Lv, Y., Duan, Y., Kang, W., et al: ‘Traffic flow prediction with big data: a deep learning approach’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (2), pp. 865873.
    52. 52)
      • 38. van der Pol, E.: ‘Deep reinforcement learning for coordination in traffic light control’. Doctoral dissertation, Master's thesis, University of Amsterdam.
    53. 53)
      • 59. Dong, W., Li, J., Yao, R., et al: ‘Characterizing driving styles with deep learning’. arXiv preprint arXiv:1607.03611, 13 July 2016.
    54. 54)
      • 22. Sainath, T.N., Vinyals, O., Senior, A.: ‘Convolutional, long short-term memory, fully connected deep neural networks’. 2015 IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), Brisbane, Queensland, Australia, 19 April 2015, pp. 45804584.
    55. 55)
      • 25. Lippi, M., Bertini, M., Frasconi, P.: ‘Short-term traffic flow forecasting: An experimental comparison of time-series analysis and supervised learning’, IEEE Trans. Intell. Transp. Syst., 2013, 14, (2), pp. 871882.
    56. 56)
      • 35. El-Tantawy, S., Abdulhai, B., Abdelgawad, H.: ‘Multiagent reinforcement learning for integrated network of adaptive traffic signal controllers (MARLIN-ATSC): methodology and large-scale application on downtown Toronto’, IEEE Trans. Intell. Transp. Syst., 2013, 14, (3), pp. 11401150.
    57. 57)
      • 9. Tompson, J.J., Jain, A., LeCun, Y., et al: ‘Joint training of a convolutional network and a graphical model for human pose estimation’. Advances in Neural Information Processing Systems, Montréal, Canada, 2014, pp. 17991807.
    58. 58)
      • 4. Ellis, K., Godbole, S., Marshall, S., et al: ‘Identifying active travel behaviors in challenging environments using GPS, accelerometers, and machine learning algorithms’, Front. Public Health, 2014, 2, pp. 3946.
    59. 59)
      • 3. Fusco, G., Colombaroni, C., Comelli, L., et al: ‘Short-term traffic predictions on large urban traffic networks: applications of network-based machine learning models and dynamic traffic assignment models’. 2015 Int. Conf. Models and Technologies for Intelligent Transportation Systems (MT-ITS), Budapest, Hungary, 3 June 2015, pp. 93101.
    60. 60)
      • 60. Dwivedi, K., Biswaranjan, K., Sethi, A.: ‘Drowsy driver detection using representation learning’. 2014 IEEE Int. Advance Computing Conf. (IACC), Gurgaon, India, 21 February 2014, pp. 995999.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2018.0064
Loading

Related content

content/journals/10.1049/iet-its.2018.0064
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading