access icon free Experimental analyses and clustering of travel choice behaviours by floating car big data in a large urban area

This study introduces a general methodology to process sparse floating car data, reconstruct the routes followed by the drivers, and cluster them to achieve suitable choice sets of significantly different routes for calibrating behavioural models. This methodology is applied to a large set of floating car data collected in Rome in 2010. Results underlined that routes assigned to different clusters are actually very different to each other. Nevertheless, as expected according to Wardrop's principle, the clusters belonging to the same origin–destination have rather similar average route travel times, even if there is a large range between their minimum and maximum values. A focus on drivers’ behaviour highlighted their propensity to follow the same route to their usual destination, though the 12% of the drivers switched to an alternative route. However, the analysis conducted over the 1 month of observations did not reveal the existence of any systematic correlation between neither the change of route nor the change of departure time and the travel time experienced the day before.

Inspec keywords: pattern clustering; behavioural sciences computing; driver information systems; Big Data; automobiles

Other keywords: large urban area; travel choice behaviour clustering; floating car Big Data; floating car data set collection; sparse floating car data processing; Wardrop's principle; route reconstruction; experimental analysis; behavioural models

Subjects: Social and behavioural sciences computing; Data handling techniques

References

    1. 1)
      • 5. Akgün, V., Erkut, E., Batta, R.: ‘On finding dissimilar paths’, Eur. J. Oper. Res., 2000, 121, (2), pp. 232246.
    2. 2)
      • 19. Liu, X., Liu, K., Li, M., et al: ‘A ST-CRF map-matching method for low-frequency floating car data’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (5).
    3. 3)
      • 11. Cascetta, E., Papola, A.: ‘Random utility models with implicit availability/perception of choice alternatives for the simulation of travel demand’, Transp. Res. C, Emerg. Technol., 2001, 9, (4), pp. 249263.
    4. 4)
      • 18. Li, J., Xie, L.H., Lai, X.J.: ‘Route reconstruction from floating car data with low sampling rate based on feature matching’, Res. J. Appl. Sci. Eng. Technol., 2013, 6, (12), pp. 21532158.
    5. 5)
      • 27. Rambaldi, S., Marchioni, M., Bazzani, A., et al: ‘Traffic global analysis on the whole Italian road network’. IEEE MIPRO, Proc. 35th Int. Convention, Opatija, Croatia, May 2012, pp. 16781682.
    6. 6)
      • 28. de la Barra, T., Perez, B., Anez, J.: ‘Multidimensional path search and assignment’. 21st PTRC Summer Annual Meeting, University of Manchester, UK, 1993.
    7. 7)
      • 16. Bierlaire, M., Chen, J., Newman, J.: ‘A probabilistic map matching method for smartphone GPS data’, Transp. Res. C, 2013, 26.
    8. 8)
      • 9. Bekhor, S., Ben-Akiva, M., Ramming, M.S.: ‘Adaptation of logit kernel to route choice situation’, Transp. Res. Rec., 2002, 1805, pp. 7885.
    9. 9)
      • 2. De Felice, M., Baiocchi, A., Cuomo, F., et al: ‘Traffic monitoring and incident detection through VANETs’. Proc. 11th IEEE Annual Conf. Wireless On-demand Network Systems and Services (WONS), 2014, pp. 122129.
    10. 10)
      • 20. Kim, J., Mahmassani, H.S.: ‘Spatial and temporal characterization of travel patterns in a traffic patterns in a traffic network using vehicle trajectories’, Transp. Res. Procedia, 2015, 9.
    11. 11)
      • 1. Fusco, G., Colombaroni, C., Isaenko, N.: ‘Short-term speed predictions exploiting big data on large urban road networks’, Transp. Res. C, Emerg. Technol., 2016, 73, pp. 183201.
    12. 12)
      • 24. Vacca, A., Meloni, I.: ‘Understanding route switch behavior: an analysis using GPS based data’, Transp. Res. Procedia, 2015, 5, pp. 5665.
    13. 13)
      • 25. Mahmassani, H.S., Liu, Y.: ‘Dynamics of commuting decision behavior under advanced traveler information systems’, Transp. Res. C, Emerg. Technol., 1999, 7, pp. 9197.
    14. 14)
      • 7. Martí, R., González-Velarde, J.L., Duarte, A.: ‘Heuristics for the biobjective path dissimilarity problem’, Comput. Oper. Res., 2009, 36, pp. 29052912.
    15. 15)
      • 13. Isaenko, N., Colombaroni, C., Fusco, G.: ‘Traffic dynamics estimation by using raw floating car data’. Fifth IEEE Int. Conf. Models and Technologies for Intelligent Transportation Systems (MT-ITS), 2017, pp. 704709.
    16. 16)
      • 4. Fusco, G., Colombaroni, C., Isaenko, N.: ‘Dynamic traveler information systems’, in Fusco, G. (Ed.): ‘Intelligent transport systems (ITS): past, present and future directions’ (Nova Science, Hauppauge, NY, 2017).
    17. 17)
      • 23. Avineri, E., Prashker, J.N.: ‘Sensitivity to travel time variability: travelers’ learning perspective’, Transp. Res. C, Emerg. Technol., 2005, 13, (2), pp. 157183.
    18. 18)
      • 22. Selten, R., Chmura, T., Pitz, T., et al: ‘Commuters route choice behavior’, Games Econ. Behav., 2007, 58, (2), pp. 394406.
    19. 19)
      • 12. Fusco, G., Colombaroni, C., Comelli, L., et al: ‘Short-term traffic predictions on large urban traffic networks: applications of network-based machine learning models and dynamic traffic assignment models’. Proc. Fourth IEEE Int. Conf. Models and Technologies for Intelligent Transportation Systems (MT-ITS), 2015, pp. 93101.
    20. 20)
      • 6. Dell'Olmo, P., Gentili, M., Scozzari, A.: ‘On finding dissimilar Pareto-optimal paths’, Eur. J. Oper. Res., 2005, 162, (1), pp. 7082.
    21. 21)
      • 8. Cascetta, E., Nuzzolo, A., Russo, F., et al: ‘A modified logit route choice model overcoming path overlapping problems: specification and some calibration results for interurban networks’. Proc. 13th Int. Symp. Transportation and Traffic Theory, Pergamon, Lyon, France, 1997, pp. 697711.
    22. 22)
      • 10. Marzano, V., Papola, A.: ‘A link based path-multilevel logit model for route choice which allows implicit path enumeration’. Proc. European Transport Conf., Strasbourg, France, 2004.
    23. 23)
      • 3. Fusco, G., Colombaroni, C., Isaenko, N.: ‘Comparative analysis of implicit models for real-time short-term traffic predictions’, IET Intell. Transp. Syst., 2016, 10, (4), pp. 270278.
    24. 24)
      • 15. Frejinger, E., Bierlaire, M.: ‘Capturing correlation with subnetworks in route choice models’, Transp. Res. B, Methodol., 2007, 41, (3), pp. 363378.
    25. 25)
      • 17. Chen, F., Shen, M., Tang, Y.: ‘Local path searching based map matching algorithm for floating car data’. Int. Conf. Environmental Science and Information Application Technology (ESIAT 2011), Beijing, China, June 2011, pp. 704709.
    26. 26)
      • 21. Meneguzzer, C., Olivieri, A.: ‘Day-to-day traffic dynamics: laboratory-like experiment on route choice and route switching in a simple network with limited feedback information’, Soc. Behav. Sci., 2013, 87, pp. 4459.
    27. 27)
      • 14. Rahmani, M., Koutsopoulos, H.N.: ‘Path inference from sparse floating car data for urban networks’, Transp. Res. C, Emerg. Technol., 2013, 30, pp. 4154.
    28. 28)
      • 26. Tawfik, A.M., Rakha, H.A., Miller, S.D.: ‘An experimental exploration of route choice: identifying drivers choices and choice patterns and capturing network evolution’. 13th Int. IEEE Conf. Intelligent Transportation Systems (ITSC), Funchal, Portugal, September 2010.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2018.0015
Loading

Related content

content/journals/10.1049/iet-its.2018.0015
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading