Estimating urban traffic states using iterative refinement and Wardrop equilibria

Estimating urban traffic states using iterative refinement and Wardrop equilibria

For access to this article, please select a purchase option:

Buy eFirst article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Traffic has become a major problem in metropolitan areas across the world. It is critical to understand the complex interplay of a road network and its traffic states so that researchers and planners can improve the city planning and traffic logistics. The authors propose a novel framework to estimate urban traffic states using GPS traces. Their approach begins with an initial estimation of network travel times by solving a convex optimisation programme based on Wardrop equilibria. Then, they iteratively refine the estimated network travel times and vehicle traversed paths. Lastly, using the refined results as input, they perform a nested optimisation process to derive traffic states in areas without data coverage to obtain full traffic estimations. The evaluation and comparison of their approach over two state-of-the-art methods show up to 96% relative improvements. In order to study urban traffic, the authors have further conducted field tests in Beijing and San Francisco using real-world GIS data, which involve 128,701 nodes, 148,899 road segments, and over 26 million GPS traces.

Related content

This is a required field
Please enter a valid email address