http://iet.metastore.ingenta.com
1887

Estimating urban traffic states using iterative refinement and Wardrop equilibria

Estimating urban traffic states using iterative refinement and Wardrop equilibria

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Traffic has become a major problem in metropolitan areas across the world. It is critical to understand the complex interplay of a road network and its traffic states so that researchers and planners can improve the city planning and traffic logistics. The authors propose a novel framework to estimate urban traffic states using GPS traces. Their approach begins with an initial estimation of network travel times by solving a convex optimisation programme based on Wardrop equilibria. Then, they iteratively refine the estimated network travel times and vehicle traversed paths. Lastly, using the refined results as input, they perform a nested optimisation process to derive traffic states in areas without data coverage to obtain full traffic estimations. The evaluation and comparison of their approach over two state-of-the-art methods show up to 96% relative improvements. In order to study urban traffic, the authors have further conducted field tests in Beijing and San Francisco using real-world GIS data, which involve 128,701 nodes, 148,899 road segments, and over 26 million GPS traces.

References

    1. 1)
      • 1. Schrank, D., Eisele, B., Lomax, T., et al: ‘2015 urban mobility scorecard’ (Texas A&M Transportation Institute and INRIX, 2015).
    2. 2)
      • 2. Zheng, Y., Capra, L., Wolfson, O., et al: ‘Urban computing: concepts, methodologies, and applications’, ACM Trans. Intell. Syst. Technol., 2014, 5, (3), pp. 38:138:55.
    3. 3)
      • 3. Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.-L.: ‘Understanding individual human mobility patterns’, Nature, 2008, 453, (7196), p. 779.
    4. 4)
      • 4. Chen, C., Zhang, D., Guo, B., et al: ‘Tripplanner: personalized trip planning leveraging heterogeneous crowdsourced digital footprints’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (3), pp. 12591273.
    5. 5)
      • 5. Richter, C., Ware, J., Roy, N.: ‘High-speed autonomous navigation of unknown environments using learned probabilities of collision’. IEEE Int. Conf. Robotics and Automation (ICRA), Hong Kong, China, 2014, pp. 61146121.
    6. 6)
      • 6. Castro, P.S., Zhang, D., Chen, C., et al: ‘From taxi gps traces to social and community dynamics: a survey’, ACM Comput. Surv., 2013, 46, (2), pp. 17:117:34.
    7. 7)
      • 7. Yuan, J., Zheng, Y., Zhang, C., et al: ‘An interactive-voting based map matching algorithm’. Proc. 11th Int. Conf. Mobile Data Management, Kansas City, MO, USA, 2010, pp. 4352.
    8. 8)
      • 8. Hunter, T., Abbeel, P., Bayen, A.: ‘The path inference filter: model-based low-latency map matching of probe vehicle data’, IEEE Trans. Intell. Transp. Syst., 2014, 15, (2), pp. 507529.
    9. 9)
      • 9. Quddus, M., Washington, S.: ‘Shortest path and vehicle trajectory aided map-matching for low frequency GPS data’, Transp. Res. C, Emerg. Technol., 2015, 55, pp. 328339.
    10. 10)
      • 10. Tang, J., Song, Y., Miller, H., et al: ‘Estimating the most likely space–time paths, dwell times and path uncertainties from vehicle trajectory data: a time geographic method’, Transp. Res. C, Emerg. Technol., 2016, 66, pp. 176194.
    11. 11)
      • 11. Hunter, T.: ‘Large-scale, low-latency state estimation of cyberphysical systems with an application to traffic estimation’, PhD thesis, University of California, Berkeley, 2014.
    12. 12)
      • 12. Li, W., Nie, D., Wilkie, D., et al: ‘Citywide estimation of traffic dynamics via sparse GPS traces’, IEEE Intell. Transp. Syst. Mag., 2017, 9, (3), pp. 100113.
    13. 13)
      • 13. Wardrop, J.: ‘Some theoretical aspects of road traffic research’, Proc. Inst. Civ. Eng., 1952, 1, (3), pp. 325362.
    14. 14)
      • 14. Yang, H., Sasaki, T., Iida, Y., et al: ‘Estimation of origin-destination matrices from link traffic counts on congested networks’, Transp. Res. B, Methodol., 1992, 26, (6), pp. 417434.
    15. 15)
      • 15. Rahmani, M., Jenelius, E., Koutsopoulos, H.: ‘Non-parametric estimation of route travel time distributions from low-frequency floating car data’, Transp. Res. C, Emerg. Technol., 2015, 58, pp. 343362.
    16. 16)
      • 16. Li, W., Jiang, M., Chen, Y., et al: ‘Estimating traffic conditions at metropolitan scale using traffic flow theory’. 97th Transportation Research Board Annual Meeting, Washington, DC, USA, 2018.
    17. 17)
      • 17. Work, D., Blandin, S., Tossavainen, O.-P., et al: ‘A traffic model for velocity data assimilation’, Appl. Math. Res. Express, 2010, 2010, (1), pp. 135.
    18. 18)
      • 18. Li, L., Chen, X., Zhang, L.: ‘Multimodel ensemble for freeway traffic state estimations’, IEEE Trans. Intell. Transp. Syst., 2014, 15, (3), pp. 13231336.
    19. 19)
      • 19. Kong, Q.-J., Zhao, Q., Wei, C., et al: ‘Efficient traffic state estimation for large-scale urban road networks’, IEEE Trans. Intell. Transp. Syst., 2013, 14, (1), pp. 398407.
    20. 20)
      • 20. Zhang, J.-D., Xu, J., Liao, S.S.: ‘Aggregating and sampling methods for processing GPS data streams for traffic state estimation’, IEEE Trans. Intell. Transp. Syst., 2013, 14, (4), pp. 16291641.
    21. 21)
      • 21. Wang, Y., Zheng, Y., Xue, Y.: ‘Travel time estimation of a path using sparse trajectories’. Proc. 20th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, New York, NY, USA, 2014, pp. 2534.
    22. 22)
      • 22. Lou, Y., Zhang, C., Zheng, Y., et al: ‘Map-matching for low-sampling-rate gps trajectories’. Proc. 17th ACM SIGSPATIAL Int. Conf. Advances in Geographic Information Systems, Seattle, WA, USA, 2009, pp. 352361.
    23. 23)
      • 23. Hellinga, B., Izadpanah, P., Takada, H., et al: ‘Decomposing travel times measured by probe-based traffic monitoring systems to individual road segments’, Transp. Res. C, Emerg. Technol., 2008, 16, (6), pp. 768782.
    24. 24)
      • 24. Herring, R., Hofleitner, A., Abbeel, P., et al: ‘Estimating arterial traffic conditions using sparse probe data’. 13th Int. IEEE Conf. Intelligent Transportation Systems (ITSC), 2010, pp. 929936.
    25. 25)
      • 25. Asif, M.T., Mitrovic, N., Dauwels, J., et al: ‘Matrix and tensor based methods for missing data estimation in large traffic networks’, IEEE Trans. Intell. Transp. Syst., 2016, 17, (7), pp. 18161825.
    26. 26)
      • 26. Mitrovic, N., Asif, M.T., Dauwels, J., et al: ‘Low-dimensional models for compressed sensing and prediction of large-scale traffic data’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (5), pp. 29492954.
    27. 27)
      • 27. Hofleitner, A., Herring, R., Bayen, A., et al: ‘Large scale estimation of arterial traffic and structural analysis of traffic patterns using probe vehicles’. 91st Transportation Research Board Annual Meeting, Washington, DC, USA, 2012.
    28. 28)
      • 28. Gupta, A.K., Redhu, P.: ‘Analyses of the driver's anticipation effect in a new lattice hydrodynamic traffic flow model with passing’, Nonlinear Dyn., 2014, 76, (2), pp. 10011011.
    29. 29)
      • 29. Tang, T.-Q., Huang, H.-J., Shang, H.-Y.: ‘Influences of the driver's bounded rationality on micro driving behavior, fuel consumption and emissions’, Transp. Res. D, Transp. Environ., 2015, 41, pp. 423432.
    30. 30)
      • 30. Tang, T.-Q., Yi, Z.-Y., Zhang, J., et al: ‘Modelling the driving behaviour at a signalised intersection with the information of remaining green time’, IET Intell. Transp. Syst., 2017, 11, (9), pp. 596603.
    31. 31)
      • 31. Zhao, J., Li, P., Zheng, Z., et al: ‘Analysis of saturation flow rate at tandem intersections using field data’, IET Intell. Transp. Syst., 2018, 12, (5), pp. 394403.
    32. 32)
      • 32. Jiang, D., Xu, Z., Chen, Z., et al: ‘Joint time–frequency sparse estimation of large-scale network traffic’, Comput. Netw., 2011, 55, (15), pp. 35333547.
    33. 33)
      • 33. Jiang, D., Xu, Z., Xu, H.: ‘A novel hybrid prediction algorithm to network traffic’, Ann. Telecommun., 2015, 70, (9–10), pp. 427439.
    34. 34)
      • 34. Nie, L., Jiang, D., Lv, Z.: ‘Modeling network traffic for traffic matrix estimation and anomaly detection based on Bayesian network in cloud computing networks’, Ann. Telecommun., 2017, 72, (5–6), pp. 297305.
    35. 35)
      • 35. Nie, L., Jiang, D., Guo, L., et al: ‘Traffic matrix prediction and estimation based on deep learning in large-scale ip backbone networks’, J. Netw. Comput. Appl., 2016, 76, pp. 1622.
    36. 36)
      • 36. Bera, S., Rao, K.V.K.: ‘Estimation of origin-destination matrix from traffic counts: the state of the art’, Eur. Transp., 2011, 49, pp. 323.
    37. 37)
      • 37. Cascetta, E., Nguyen, S.: ‘A unified framework for estimating or updating origin/destination matrices from traffic counts’, Transp. Res. B, Methodol., 1988, 22, (6), pp. 437455.
    38. 38)
      • 38. Marzano, V., Papola, A., Simonelli, F.: ‘Limits and perspectives of effective O–D matrix correction using traffic counts’, Transp. Res. C, Emerg. Technol., 2009, 17, (2), pp. 120132.
    39. 39)
      • 39. Yang, X., Lu, Y., Hao, W.: ‘Origin destination (OD) estimation using probe vehicle trajectory and link counts’, J. Adv. Transp., 2016, 2016.
    40. 40)
      • 40. Tibshirani, R., Saunders, M., Rosset, S., et al: ‘Sparsity and smoothness via the fused lasso’, J. R. Stat. Soc. B, 2005, 67, (1), pp. 91108.
    41. 41)
      • 41. Chen, X., Lin, Q., Kim, S., et al: ‘Smoothing proximal gradient method for general structured sparse regression’, Ann. Appl. Stat., 2012, 6, (2), pp. 719752.
    42. 42)
      • 42. Hofleitner, A., Herring, R., Bayen, A.: ‘Probability distributions of travel times on arterial networks: a traffic flow and horizontal queuing theory approach’. 91st Transportation Research Board Annual Meeting, Washington, DC, USA, 2012.
    43. 43)
      • 43. LeBlanc, L., Morlok, E., Pierskalla, W.: ‘An efficient approach to solving the road network equilibrium traffic assignment problem’, Transp. Res., 1975, 9, (5), pp. 309318.
    44. 44)
      • 44. Piorkowski, M., Sarafijanovic-Djukic, N., Grossglauser, M.: ‘CRAWDAD dataset epfl/mobility (v. 2009-02-24)’, 2009. Available at http://crawdad.org/epfl/mobility/20090224.
    45. 45)
      • 45. Sheffi, Y.: ‘Urban transportation network’ (Prentice Hall, Englewood Cliffs, NJ, USA, 1985).
    46. 46)
      • 46. Yuan, J., Zheng, Y., Zhang, C., et al: ‘T-drive: driving directions based on taxi trajectories’. Proc. 18th SIGSPATIAL Int. Conf. Advances in Geographic Information Systems, San Jose, CA, USA, 2010, pp. 99108.
    47. 47)
      • 47. Wilkie, D., Sewall, J., Li, W., et al: ‘Virtualized traffic at metropolitan scales’, Front. Robot. AI, 2015, 2, p. 11.
    48. 48)
      • 48. Li, W., Wolinski, D., Lin, M.C.: ‘City-scale traffic animation using statistical learning and metamodel-based optimization’, ACM Trans. Graphics (SIGGRAPH Asia 2017), 2017, 36, (6), pp. 200:1200:12.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2018.0007
Loading

Related content

content/journals/10.1049/iet-its.2018.0007
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address