http://iet.metastore.ingenta.com
1887

Automotive radar system for multiple-vehicle detection and tracking in urban environments

Automotive radar system for multiple-vehicle detection and tracking in urban environments

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, an enhanced approach for automotive radar systems is proposed to solve the detection, tracking, and track management problem in the presence of clutter with high accuracy and low computational cost. The unscented Kalman filter (UKF) with a constant turn rate and acceleration (CTRA) dynamic model is employed for target tracking, and the tracking accuracy is enhanced by incorporating the linear regression (LR) algorithm into the UKF-CTRA algorithm. We investigate, for the first time, the Joint Probabilistic Data Association (JPDA) algorithm for data association, and the composite M/N tests for track management. The capability of the proposed approach (CTRA-UKF-LR-JPDA-composite-M/N-tests) is demonstrated by comparing it with various algorithms for different single and multi-target tracking scenarios and for various sets of parameter regimes. The results show the superior performance of the proposed method over other existing techniques in automotive radar systems. This reveals the effectiveness of the proposed algorithm as a promising technique in automotive applications.

References

    1. 1)
      • 1. Gini, F., De Maio, A., Patton, L.: ‘Waveform design and diversity for advanced radar systems’ (Institution of Engineering and Technology, London, 2012).
    2. 2)
      • 2. Charvat, G.L.: ‘Small and short-range radar systems’ (CRC Press, Boca Raton, FL, USA, 2014).
    3. 3)
      • 3. Pinezich, J.D., Heller, J., Lu, T.: ‘Ballistic projectile tracking using CW Doppler radar’, IEEE Trans. Aerosp. Electron. Syst., 2010, 46, (3), pp. 13021311.
    4. 4)
      • 4. Khalil, M., Eltrass, A.S., Elzaafarany, O., et al: ‘An improved approach for multi-target detection and tracking in automotive radar systems’. IEEE 18th Int. Conf. on Electromagnetics in Advanced Applications (ICEAA), Cairns, Australia, 2016, pp. 480483.
    5. 5)
      • 5. Bar-Shalom, Y., Daum, F., Huang, J.: ‘The probabilistic data association filter’, IEEE Control Syst., 2009, 29, (6), pp. 82100.
    6. 6)
      • 6. Bar-Shalom, Y., Li, X.-R.: ‘Multitarget-multisensor tracking: principles and techniques’ (University of Connecticut, Storrs, CT, 1995).
    7. 7)
      • 7. Kim, D.-B., Hong, S.-M.: ‘Multiple-target tracking and track management for an FMCW radar network’, EURASIP J. Adv. Signal Process., 2013, 2013, (1), pp. 19.
    8. 8)
      • 8. Zhou, H., Cao, P., Chen, S.: ‘A novel waveform design for multi-target detection in automotive FMCW radar’. IEEE Radar Conf. (RadarConf), Philadelphia, PA, USA, 2016, pp. 15.
    9. 9)
      • 9. Diewald, F., Klappstein, J., Sarholz, F., et al: ‘Radar interference-based bridge identification for collision avoidance systems’. IEEE Intelligent Vehicles Symp., Baden-Baden, Germany, 2011, pp. 113118.
    10. 10)
      • 10. Hammarstrand, L., Svensson, L., Sandblom, F., et al: ‘Extended object tracking using a radar resolution model’, IEEE Trans. Aerosp. Electron. Syst., 2012, 48, (3), pp. 23712386.
    11. 11)
      • 11. Lundquist, C., Hammarstrand, L., Gustafsson, F.: ‘Road intensity based mapping using radar measurements with a probability hypothesis density filter’, IEEE Trans. Signal Process., 2011, 59, (4), pp. 13971408.
    12. 12)
      • 12. Folster, F., Rohling, H.: ‘Data association and tracking for automotive radar networks’, IEEE Trans. Intell. Transp. Syst., 2005, 6, (4), pp. 370377.
    13. 13)
      • 13. Arne Askeland, S., Ekman, T.: ‘Tracking with a high-resolution 2-d spectral estimation based automotive radar’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (5), pp. 24182423.
    14. 14)
      • 14. Pathirana, P.N., Herath, S.C.K., Savkin, A.V.: ‘Multitarget tracking via space transformations using a single frequency continuous wave radar’, IEEE Trans. Signal Process., 2012, 60, (10), pp. 52175229.
    15. 15)
      • 15. Engels, F., Heidenreich, P., Zoubir, A.M., et al: ‘Advances in automotive radar: A framework on computationally efficient high-resolution frequency estimation’, IEEE Signal Process. Mag., 2017, 34, (2), pp. 3646.
    16. 16)
      • 16. Macaveiu, A., Nafornita, C., Isar, A., et al: ‘A method for building the range-Doppler map for multiple automotive radar targets’. IEEE 11th Int. Symp. on Electronics and Telecommunications (ISETC), Timisoara, Romania, 2014, pp. 16.
    17. 17)
      • 17. Richter, E., Schubert, R., Wanielik, G.: ‘Radar and vision based data fusion-advanced filtering techniques for a multi object vehicle tracking system’. IEEE Intelligent Vehicles Symp., Eindhoven, The Netherlands, 2008, pp. 120125.
    18. 18)
      • 18. Tsogas, M., Polychronopoulos, A., Amditis, A.: ‘Unscented Kalman filter design for curvilinear motion models suitable for automotive safety applications’. IEEE 8th Int. Conf. on Information Fusion, vol. 2, Philadelphia, USA, 2005, p. 8.
    19. 19)
      • 19. Schubert, R., Richter, E., Wanielik, G.: ‘Comparison and evaluation of advanced motion models for vehicle tracking’. IEEE 11th Int. Conf. on Information Fusion, Cologne, Germany, 2008, pp. 16.
    20. 20)
      • 20. Macaveiu, A., Campeanu, A., Nafornita, I.: ‘Kalman-based tracker for multiple radar targets’. IEEE 10th Int. Conf. on Communications (COMM), Bucharest, Romania, 2014, pp. 14.
    21. 21)
      • 21. Kim, Y.-S., Hong, K.-S.: ‘An IMM algorithm for tracking maneuvering vehicles in an adaptive cruise control environment’, Int. J. Control Autom. Syst., 2004, 2, pp. 310318.
    22. 22)
      • 22. Salau, N.P.G., Trierweiler, J.O., Secchi, A.R., et al: ‘A new process noise covariance matrix tuning algorithm for Kalman based state estimators’. 7th IFAC Int. Symp. on Advanced Control of Chemical Processes, Istanbul, Turkey, 2009, vol. 7.
    23. 23)
      • 23. Saho, K., Masugi, M.: ‘Automatic parameter setting method for an accurate Kalman filter tracker using an analytical steady-state performance index’, IEEE Access, 2015, 3, pp. 19191930.
    24. 24)
      • 24. Bar-Shalom, Y., Li, X.-R., Kirubarajan, T.: ‘Estimation with applications to tracking and navigation: theory algorithms and software’ (John Wiley & Sons, New York, NY, USA, 2004).
    25. 25)
      • 25. Stellet, J.E., Straub, F., Schumacher, J., et al: ‘Estimating the process noise variance for vehicle motion models’. IEEE 18th Int. Conf. on Intelligent Transportation Systems (ITSC), Las Palmas, Spain, 2015, pp. 15121519.
    26. 26)
      • 26. Wan, E.A., Van Der Merwe, R.: ‘The unscented Kalman filter for nonlinear estimation’. IEEE Adaptive Systems for Signal Processing, Communications, and Control Symp. (AS-SPCC 2000), Lake Louise, Canada, 2000, pp. 153158.
    27. 27)
      • 27. Daum, F.: ‘Nonlinear filters: beyond the Kalman filter’. IEEE Aerosp. Electron. Syst. Mag., 2005, 20, (8), pp. 5769.
    28. 28)
      • 28. Bishop, C.: ‘Pattern recognition and machine learning’ (Springer, New York, 2006, 1st edn.).
    29. 29)
      • 29. Castanedo, F.: ‘A review of data fusion techniques’. Sci. World J., 2013, doi.org/10.1155/2013/704504.
    30. 30)
      • 30. Pulford, G.W.: ‘Taxonomy of multiple target tracking methods’. IEE Radar, Sonar Navig., 2005, 152, (5), pp. 291304.
    31. 31)
      • 31. Blackman, S.S.: ‘Multiple hypothesis tracking for multiple target tracking’, IEEE Aerosp. Electron. Syst. Mag., 2004, 19, (1), pp. 518.
    32. 32)
      • 32. Mahler, R.P.S.: ‘Multi-target Bayes filtering via first-order multi-target moments’, IEEE Trans. Aerosp. Electron. Syst., 2003, 39, (4), pp. 11521178.
    33. 33)
      • 33. Bar-Shalom, Y.: ‘Target tracking using probabilistic data association-based techniques with applications to sonar, radar, and EO sensors’ (CRC Press LLC, Boca Raton, FL, USA, 2009).
    34. 34)
      • 34. Braca, P., Grasso, R., Vespe, M., et al: ‘Application of the JPDA-UKF to HFSW radars for maritime situational awareness’. IEEE 15th Int. Conf. on Information Fusion, Singapore, 2012, pp. 25852592.
    35. 35)
      • 35. Blanco, J.-L., González-Jiménez, J., Fernández-Madrigal, J.-A.: ‘An alternative to the Mahalanobis distance for determining optimal correspondences in data association’, IEEE Trans. Robot., 2012, 28, (4), pp. 980986.
    36. 36)
      • 36. Blanding, W.R., Willett, P.K., Bar-Shalom, Y., et al: ‘Multisensor track management for targets with fluctuating SNR’, IEEE Trans. Aerosp. Electron. Syst., 2009, 45, (4), pp. 12751292.
    37. 37)
      • 37. Vincent Poor, H.: ‘An introduction to signal detection and estimation’ (Springer Science & Business Media, New York, 2013).
    38. 38)
      • 38. Peynot, T., Scheding, S., Terho, S.: ‘The Marulan data sets: multi-sensor perception in a natural environment with challenging conditions’, Int. J. Robot. Res., 2010, 29, (13), pp. 16021607.
    39. 39)
      • 39. Rohling, H., Meinecke, M.-M.: ‘Waveform design principles for automotive radar systems’. IEEE CIE Int. Conf. on Radar, Beijing, China, 2001, pp. 14.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0370
Loading

Related content

content/journals/10.1049/iet-its.2017.0370
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address