http://iet.metastore.ingenta.com
1887

access icon openaccess Railway freight volume forecast using an ensemble model with optimised deep belief network

  • HTML
    157.1015625Kb
  • PDF
    2.0869178771972656MB
  • XML
    140.9443359375Kb
Loading full text...

Full text loading...

/deliver/fulltext/10.1049/iet-its.2017.0369/IET-ITS.2017.0369.html;jsessionid=2rm60n7nf9761.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-its.2017.0369&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Zhou, C., Tao, J.: ‘Adaptive combination forecasting model for China's logistics freight volume based on an improved PSO-BP neural network’, Kybernetes, 2015, 44, (4), pp. 646666.
    2. 2)
      • 2. Feng, F., Xu, Y., Tang, Z.: ‘Research on the charge rate of railway value-guaranteed transportation based on competitive and cooperative relationships’, Adv. Mech. Eng., 2018, 10, (1), pp. 111.
    3. 3)
      • 3. Wang, Y., Chen, X.: ‘Forecast of passenger and freight traffic volume based on elasticity coefficient method and grey model’. Proc. 13th COTA Int. Conf. of Transportation Professionals (CICTP), Shenzhen, China, August 2013, pp. 136147.
    4. 4)
      • 4. Ma, J., Chen, Z.: ‘Forecast of civil aviation freight volume using unbiased grey-fuzzy-Markov chain method’. Proc. 1st Int. Conf. on Information Management, Xi'an, China, 23–24 November 2013, 2013, pp. 528531.
    5. 5)
      • 5. Lu, H., Song, R.: ‘Forecast of railway freight ton-kilometers based on the ubgpm-markov model’. Proc. 4th Int. Conf. on Intelligent System and Applied Material (GSAM), Taiyuan, China, August 2014, pp. 21992202.
    6. 6)
      • 6. Zia, W.: ‘Simultaneous modeling of passenger and cargo demand at an airport’, Transp. Res. Record, 2013, 2336, pp. 6374.
    7. 7)
      • 7. Yang, Y., Yu, C.: ‘Prediction models based on multivariate statistical methods and their applications for predicting railway freight volume’, Neurocomputing, 2015, 158, pp. 210215.
    8. 8)
      • 8. Yang, Y., Yu, C.: ‘Development of the regional freight transportation demand prediction models based on the regression analysis methods’, Neurocomputing, 2015, 158, pp. 4247.
    9. 9)
      • 9. Gopal, R.P., Prasanta, K.S.: ‘Estimation of freight demand at Mumbai port using regression and time series models’, KSCE J. Civ. Eng., 2016, 20, (5), pp. 20222032.
    10. 10)
      • 10. Sun, J., Wei, C.: ‘Railway freight turnover forecast based on the BP neural network’. Proc. 3rd Int. Conf. on Materials Engineering for Advanced Technologies (ICMEAT), Brisbane, Australia, January 2014, pp. 837840.
    11. 11)
      • 11. Yang, H., Zou, Y., Wang, Z., et al: ‘A hybrid method for short-term freeway travel time prediction based on wavelet neural network and Markov chain’, Can. J. Civ. Eng., 2018, 45, (2), pp. 7786.
    12. 12)
      • 12. Tang, J., Liu, F., Zou, Y., et al: ‘An improved fuzzy neural network for traffic speed prediction considering periodic characteristic’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (9), pp. 23402350.
    13. 13)
      • 13. Ma, X., Dai, Z., He, Z., et al: ‘Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction’, Sensors, 2017, 17, (4), p. 818.
    14. 14)
      • 14. Jia, Y., Wu, J., Moshe, B., et al: ‘Rainfall-integrated traffic speed prediction using deep learning method’, IET Intell. Transp. Syst., 2017, 11, (9), pp. 531536.
    15. 15)
      • 15. Yarah, B., Hazem, M.A., Hoda, T., et al: ‘Speed prediction from mobile sensors using cellular phone-based traffic data’, IET Intell. Transp. Syst., 2017, 11, (7), pp. 387396.
    16. 16)
      • 16. Tang, J., Liu, F., Zhang, W., et al: ‘Lane-changes prediction based on adaptive fuzzy neural network’, Expert Syst. Appl., 2018, 91, pp. 452463.
    17. 17)
      • 17. Takashi, K., Shinsuke, K.: ‘Time series forecasting using a deep belief network with restricted Boltzmann machines’, Neurocomputing, 2014, 137, pp. 4756.
    18. 18)
      • 18. Shao, H., Jiang, H.: ‘Rolling bearing fault diagnosis using an optimization deep belief network’. Meas. Sci. Technol., 2015, 26, (11), p. 115002.
    19. 19)
      • 19. Hinton, G., Osindero, S.: ‘A fast learning algorithm for deep belief nets’, Neural Comput., 2006, 18, (7), pp. 15271554.
    20. 20)
      • 20. Ratnadip, A.: ‘A neural network based linear ensemble framework for time series forecasting’, Neurocomputing, 2015, 157, pp. 231242.
    21. 21)
      • 21. Bai, Y., Chen, Z., Xie, J., et al: ‘Daily reservoir inflow forecasting using multiscale deep feature learning with hybrid models’, J. Hydrol., 2016, 532, pp. 193206.
    22. 22)
      • 22. Lohninger, H.: ‘Teach/Me data analysis’ (Springer, Berlin, Heidelberg, 2002), p. 258.
    23. 23)
      • 23. Hamzaebi, C.: ‘Improving artificial neural networks’ performance in seasonal time series forecasting’, Inf. Sci., 2008, 178, (23), pp. 45504559.
    24. 24)
      • 24. Kennedy, J., Eberhart, R.: ‘Particle swarm optimization’. Proc. IEEE Conf. on Neural Networks, Perth, Australia, November 1995, pp. 19421948.
    25. 25)
      • 25. Zhang, J., Zhang, J.: ‘A hybrid particle swarm optimization-backpropagation algorithm for feedforward neural network training’, Appl. Math. Comput., 2007, 185, pp. 10261037.
    26. 26)
      • 26. Venu, G., Ganesh, K.: ‘Comparison of particle swarm optimization and back propagation as training algorithms for neural net-works’. Proc. IEEE Swarm Intelligence Symp. 2003, Indianapolis, IN, USA, April 2003, pp. 110117.
    27. 27)
      • 27. Settles, M., Rodebaugh, B., Soule, T.: ‘Comparison of genetic algorithm and particle swarm optimizer when evolving are current neural network’. Proc. Genetic and Evolutionary Computation, Chicago, IL, USA, July 2003, pp. 148149.
    28. 28)
      • 28. Melo, H., Watada, J.: ‘Gaussian-PSO with fuzzy reasoning based on structural learning for training a neural network’, Neurocomputing, 2016, 172, pp. 405412.
    29. 29)
      • 29. George, M., Wai, W.: ‘The Ziggurat method for generating random variables’, J. Stat. Softw., 2000, 5, (8), pp. 17.
    30. 30)
      • 30. Hinton, G.E., Salakhutdinov, R.R.: ‘Reducing the dimensionality of data with neural networks’, Science, 2006, 313, (5786), pp. 504507.
    31. 31)
      • 31. Lecun, Y., Bottou, L.: ‘Gradient-based learning applied to document recognition’, Proc. IEEE, 1998, 86, (11), pp. 22782324.
    32. 32)
      • 32. Hinton, G.E., Teh, Y.W.: ‘Rate-coded restricted Boltzmann machines for face recognition’. Proc. 14th Neural Information Processing Systems, Colorado, USA, November 2000, pp. 872878.
    33. 33)
      • 33. Hinton, G.E.: ‘Training products of experts by minimizing contrastive divergence’, Neural Comput., 2002, 14, (8), pp. 17711800.
    34. 34)
      • 34. Cho, K., Ilin, A.: ‘Improved learning of Gaussian-Bernoulli restricted Boltzmann machines’. Proc. 21st Conf. on Artificial Neural Networks, Espoo, Finland, June 2011, pp. 1017.
    35. 35)
      • 35. Le, R.N., Bengio, Y.: ‘Representational power of restricted Boltzmann machines and deep belief networks’, Neural Comput., 2008, 20, (6), pp. 16311649.
    36. 36)
      • 36. Kuncheva, L.I.: ‘Combining pattern classifiers: methods and algorithms’ (Wiley-Interscience, New York, USA, 2005).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0369
Loading

Related content

content/journals/10.1049/iet-its.2017.0369
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address