http://iet.metastore.ingenta.com
1887

access icon openaccess Railway freight volume forecast using an ensemble model with optimised deep belief network

  • HTML
    157.1015625Kb
  • PDF
    2.0869178771972656MB
  • XML
    140.9443359375Kb
Loading full text...

Full text loading...

/deliver/fulltext/10.1049/iet-its.2017.0369/IET-ITS.2017.0369.html;jsessionid=2nq5li7ae5fsi.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-its.2017.0369&mimeType=html&fmt=ahah

References

    1. 1)
      • C. Zhou , J. Tao .
        1. Zhou, C., Tao, J.: ‘Adaptive combination forecasting model for China's logistics freight volume based on an improved PSO-BP neural network’, Kybernetes, 2015, 44, (4), pp. 646666.
        . Kybernetes , 4 , 646 - 666
    2. 2)
      • F. Feng , Y. Xu , Z. Tang .
        2. Feng, F., Xu, Y., Tang, Z.: ‘Research on the charge rate of railway value-guaranteed transportation based on competitive and cooperative relationships’, Adv. Mech. Eng., 2018, 10, (1), pp. 111.
        . Adv. Mech. Eng. , 1 , 1 - 11
    3. 3)
      • Y. Wang , X. Chen .
        3. Wang, Y., Chen, X.: ‘Forecast of passenger and freight traffic volume based on elasticity coefficient method and grey model’. Proc. 13th COTA Int. Conf. of Transportation Professionals (CICTP), Shenzhen, China, August 2013, pp. 136147.
        . Proc. 13th COTA Int. Conf. of Transportation Professionals (CICTP) , 136 - 147
    4. 4)
      • J. Ma , Z. Chen .
        4. Ma, J., Chen, Z.: ‘Forecast of civil aviation freight volume using unbiased grey-fuzzy-Markov chain method’. Proc. 1st Int. Conf. on Information Management, Xi'an, China, 23–24 November 2013, 2013, pp. 528531.
        . Proc. 1st Int. Conf. on Information Management , 528 - 531
    5. 5)
      • H. Lu , R. Song .
        5. Lu, H., Song, R.: ‘Forecast of railway freight ton-kilometers based on the ubgpm-markov model’. Proc. 4th Int. Conf. on Intelligent System and Applied Material (GSAM), Taiyuan, China, August 2014, pp. 21992202.
        . Proc. 4th Int. Conf. on Intelligent System and Applied Material (GSAM) , 2199 - 2202
    6. 6)
      • W. Zia .
        6. Zia, W.: ‘Simultaneous modeling of passenger and cargo demand at an airport’, Transp. Res. Record, 2013, 2336, pp. 6374.
        . Transp. Res. Record , 63 - 74
    7. 7)
      • Y. Yang , C. Yu .
        7. Yang, Y., Yu, C.: ‘Prediction models based on multivariate statistical methods and their applications for predicting railway freight volume’, Neurocomputing, 2015, 158, pp. 210215.
        . Neurocomputing , 210 - 215
    8. 8)
      • Y. Yang , C. Yu .
        8. Yang, Y., Yu, C.: ‘Development of the regional freight transportation demand prediction models based on the regression analysis methods’, Neurocomputing, 2015, 158, pp. 4247.
        . Neurocomputing , 42 - 47
    9. 9)
      • R.P. Gopal , K.S. Prasanta .
        9. Gopal, R.P., Prasanta, K.S.: ‘Estimation of freight demand at Mumbai port using regression and time series models’, KSCE J. Civ. Eng., 2016, 20, (5), pp. 20222032.
        . KSCE J. Civ. Eng. , 5 , 2022 - 2032
    10. 10)
      • J. Sun , C. Wei .
        10. Sun, J., Wei, C.: ‘Railway freight turnover forecast based on the BP neural network’. Proc. 3rd Int. Conf. on Materials Engineering for Advanced Technologies (ICMEAT), Brisbane, Australia, January 2014, pp. 837840.
        . Proc. 3rd Int. Conf. on Materials Engineering for Advanced Technologies (ICMEAT) , 837 - 840
    11. 11)
      • H. Yang , Y. Zou , Z. Wang .
        11. Yang, H., Zou, Y., Wang, Z., et al: ‘A hybrid method for short-term freeway travel time prediction based on wavelet neural network and Markov chain’, Can. J. Civ. Eng., 2018, 45, (2), pp. 7786.
        . Can. J. Civ. Eng. , 2 , 77 - 86
    12. 12)
      • J. Tang , F. Liu , Y. Zou .
        12. Tang, J., Liu, F., Zou, Y., et al: ‘An improved fuzzy neural network for traffic speed prediction considering periodic characteristic’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (9), pp. 23402350.
        . IEEE Trans. Intell. Transp. Syst. , 9 , 2340 - 2350
    13. 13)
      • X. Ma , Z. Dai , Z. He .
        13. Ma, X., Dai, Z., He, Z., et al: ‘Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction’, Sensors, 2017, 17, (4), p. 818.
        . Sensors , 4 , 818
    14. 14)
      • Y. Jia , J. Wu , B. Moshe .
        14. Jia, Y., Wu, J., Moshe, B., et al: ‘Rainfall-integrated traffic speed prediction using deep learning method’, IET Intell. Transp. Syst., 2017, 11, (9), pp. 531536.
        . IET Intell. Transp. Syst. , 9 , 531 - 536
    15. 15)
      • B. Yarah , M.A. Hazem , T. Hoda .
        15. Yarah, B., Hazem, M.A., Hoda, T., et al: ‘Speed prediction from mobile sensors using cellular phone-based traffic data’, IET Intell. Transp. Syst., 2017, 11, (7), pp. 387396.
        . IET Intell. Transp. Syst. , 7 , 387 - 396
    16. 16)
      • J. Tang , F. Liu , W. Zhang .
        16. Tang, J., Liu, F., Zhang, W., et al: ‘Lane-changes prediction based on adaptive fuzzy neural network’, Expert Syst. Appl., 2018, 91, pp. 452463.
        . Expert Syst. Appl. , 452 - 463
    17. 17)
      • K. Takashi , K. Shinsuke .
        17. Takashi, K., Shinsuke, K.: ‘Time series forecasting using a deep belief network with restricted Boltzmann machines’, Neurocomputing, 2014, 137, pp. 4756.
        . Neurocomputing , 47 - 56
    18. 18)
      • H. Shao , H. Jiang .
        18. Shao, H., Jiang, H.: ‘Rolling bearing fault diagnosis using an optimization deep belief network’. Meas. Sci. Technol., 2015, 26, (11), p. 115002.
        . Meas. Sci. Technol. , 11 , 115002
    19. 19)
      • G. Hinton , S. Osindero .
        19. Hinton, G., Osindero, S.: ‘A fast learning algorithm for deep belief nets’, Neural Comput., 2006, 18, (7), pp. 15271554.
        . Neural Comput. , 7 , 1527 - 1554
    20. 20)
      • A. Ratnadip .
        20. Ratnadip, A.: ‘A neural network based linear ensemble framework for time series forecasting’, Neurocomputing, 2015, 157, pp. 231242.
        . Neurocomputing , 231 - 242
    21. 21)
      • Y. Bai , Z. Chen , J. Xie .
        21. Bai, Y., Chen, Z., Xie, J., et al: ‘Daily reservoir inflow forecasting using multiscale deep feature learning with hybrid models’, J. Hydrol., 2016, 532, pp. 193206.
        . J. Hydrol. , 193 - 206
    22. 22)
      • H. Lohninger . (2002)
        22. Lohninger, H.: ‘Teach/Me data analysis’ (Springer, Berlin, Heidelberg, 2002), p. 258.
        .
    23. 23)
      • C. Hamzaebi .
        23. Hamzaebi, C.: ‘Improving artificial neural networks’ performance in seasonal time series forecasting’, Inf. Sci., 2008, 178, (23), pp. 45504559.
        . Inf. Sci. , 23 , 4550 - 4559
    24. 24)
      • J. Kennedy , R. Eberhart .
        24. Kennedy, J., Eberhart, R.: ‘Particle swarm optimization’. Proc. IEEE Conf. on Neural Networks, Perth, Australia, November 1995, pp. 19421948.
        . Proc. IEEE Conf. on Neural Networks , 1942 - 1948
    25. 25)
      • J. Zhang , J. Zhang .
        25. Zhang, J., Zhang, J.: ‘A hybrid particle swarm optimization-backpropagation algorithm for feedforward neural network training’, Appl. Math. Comput., 2007, 185, pp. 10261037.
        . Appl. Math. Comput. , 1026 - 1037
    26. 26)
      • G. Venu , K. Ganesh .
        26. Venu, G., Ganesh, K.: ‘Comparison of particle swarm optimization and back propagation as training algorithms for neural net-works’. Proc. IEEE Swarm Intelligence Symp. 2003, Indianapolis, IN, USA, April 2003, pp. 110117.
        . Proc. IEEE Swarm Intelligence Symp. 2003 , 110 - 117
    27. 27)
      • M. Settles , B. Rodebaugh , T. Soule .
        27. Settles, M., Rodebaugh, B., Soule, T.: ‘Comparison of genetic algorithm and particle swarm optimizer when evolving are current neural network’. Proc. Genetic and Evolutionary Computation, Chicago, IL, USA, July 2003, pp. 148149.
        . Proc. Genetic and Evolutionary Computation , 148 - 149
    28. 28)
      • H. Melo , J. Watada .
        28. Melo, H., Watada, J.: ‘Gaussian-PSO with fuzzy reasoning based on structural learning for training a neural network’, Neurocomputing, 2016, 172, pp. 405412.
        . Neurocomputing , 405 - 412
    29. 29)
      • M. George , W. Wai .
        29. George, M., Wai, W.: ‘The Ziggurat method for generating random variables’, J. Stat. Softw., 2000, 5, (8), pp. 17.
        . J. Stat. Softw. , 8 , 1 - 7
    30. 30)
      • G.E. Hinton , R.R. Salakhutdinov .
        30. Hinton, G.E., Salakhutdinov, R.R.: ‘Reducing the dimensionality of data with neural networks’, Science, 2006, 313, (5786), pp. 504507.
        . Science , 5786 , 504 - 507
    31. 31)
      • Y. Lecun , L. Bottou .
        31. Lecun, Y., Bottou, L.: ‘Gradient-based learning applied to document recognition’, Proc. IEEE, 1998, 86, (11), pp. 22782324.
        . Proc. IEEE , 11 , 2278 - 2324
    32. 32)
      • G.E. Hinton , Y.W. Teh .
        32. Hinton, G.E., Teh, Y.W.: ‘Rate-coded restricted Boltzmann machines for face recognition’. Proc. 14th Neural Information Processing Systems, Colorado, USA, November 2000, pp. 872878.
        . Proc. 14th Neural Information Processing Systems , 872 - 878
    33. 33)
      • G.E. Hinton .
        33. Hinton, G.E.: ‘Training products of experts by minimizing contrastive divergence’, Neural Comput., 2002, 14, (8), pp. 17711800.
        . Neural Comput. , 8 , 1771 - 1800
    34. 34)
      • K. Cho , A. Ilin .
        34. Cho, K., Ilin, A.: ‘Improved learning of Gaussian-Bernoulli restricted Boltzmann machines’. Proc. 21st Conf. on Artificial Neural Networks, Espoo, Finland, June 2011, pp. 1017.
        . Proc. 21st Conf. on Artificial Neural Networks , 10 - 17
    35. 35)
      • R.N. Le , Y. Bengio .
        35. Le, R.N., Bengio, Y.: ‘Representational power of restricted Boltzmann machines and deep belief networks’, Neural Comput., 2008, 20, (6), pp. 16311649.
        . Neural Comput. , 6 , 1631 - 1649
    36. 36)
      • L.I. Kuncheva . (2005)
        36. Kuncheva, L.I.: ‘Combining pattern classifiers: methods and algorithms’ (Wiley-Interscience, New York, USA, 2005).
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0369
Loading

Related content

content/journals/10.1049/iet-its.2017.0369
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address