http://iet.metastore.ingenta.com
1887

Framework for dynamic hand gesture recognition using Grassmann manifold for intelligent vehicles

Framework for dynamic hand gesture recognition using Grassmann manifold for intelligent vehicles

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the authors propose a novel and robust approach to control auxiliary tasks in vehicles using hand gestures. First, they create a three-dimensional video volume by appending one frame to other that captures the motion history of frames. Then, they extract features using histogram of oriented gradients on each video volume. These features are represented in the form of subspaces on Grassmann manifold. To improve the recognition accuracy, they map the data from one manifold to another manifold with the help of a Grassmann kernel. Grassmann graph embedding discriminant analysis framework is used to classify the gestures. They perform experiments on two datasets: LISA and Cambridge Hand Gesture in three different testing methods such as 1/3-subject, 2/3-subject and cross-subject. Experimental results show that their proposed model outperforms and is comparable with the state-of-the-art methods.

References

    1. 1)
      • B. Verma , A. Choudhary .
        1. Verma, B., Choudhary, A.: ‘Unsupervised learning based static hand gesture recognition from RGB-D sensor’. Int. Conf. Soft Computing and Pattern Recognition, Vellore, India, 2016, pp. 304314.
        . Int. Conf. Soft Computing and Pattern Recognition , 304 - 314
    2. 2)
      • S. Gupta , P. Molchanov , X. Yang .
        2. Gupta, S., Molchanov, P., Yang, X., et al: ‘Towards selecting robust hand gestures for automotive interfaces’. IEEE Intelligent Vehicles Symp. (IV), Gothenburg, Sweden, 2016, pp. 13501357.
        . IEEE Intelligent Vehicles Symp. (IV) , 1350 - 1357
    3. 3)
      • N. Das , E. Ohn-Bar , M.M. Trivedi .
        3. Das, N., Ohn-Bar, E., Trivedi, M.M.: ‘On performance evaluation of driver hand detection algorithms: challenges, dataset, and metrics’. 2015 IEEE 18th Int. Conf. Intelligent Transportation Systems (ITSC), Las Palmas, Spain, 2015, pp. 29532958.
        . 2015 IEEE 18th Int. Conf. Intelligent Transportation Systems (ITSC) , 2953 - 2958
    4. 4)
      • J. Hamm , D.D. Lee .
        4. Hamm, J., Lee, D.D.: ‘Grassmann discriminant analysis: a unifying view on subspace-based learning’. Proc. 25th Int. Conf. Machine Learning, San Diego, CA, USA, 2008, vol. 4, pp. 376383.
        . Proc. 25th Int. Conf. Machine Learning , 376 - 383
    5. 5)
      • N. Dalal , B. Triggs .
        5. Dalal, N., Triggs, B.: ‘Histograms of oriented gradients for human detection’. IEEE Computer Society Conf. Computer Vision and Pattern Recognition, San Diego, CA, USA, 2005, vol. 1, pp. 886893.
        . IEEE Computer Society Conf. Computer Vision and Pattern Recognition , 886 - 893
    6. 6)
      • M.T. Harandi , C. Sanderson , S. Shirazi .
        6. Harandi, M.T., Sanderson, C., Shirazi, S., et al: ‘Graph embedding discriminant analysis on Grassmannian manifolds for improved image set matching’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), CO, USA, 2011, pp. 27052712.
        . IEEE Conf. Computer Vision and Pattern Recognition (CVPR) , 2705 - 2712
    7. 7)
      • J.M. Keller , M.R. Gray , J.A. Givens .
        7. Keller, J.M., Gray, M.R., Givens, J.A.: ‘A fuzzy k-nearest neighbour algorithm’, IEEE Trans. Syst. Man Cybern., 1985, pp. 580585.
        . IEEE Trans. Syst. Man Cybern. , 580 - 585
    8. 8)
      • E. Ohn-Bar , M.M. Trivedi .
        8. Ohn-Bar, E., Trivedi, M.M.: ‘Hand gesture recognition in real time for automotive interfaces: a multimodal vision-based approach and evaluations’, IEEE Trans. Intell. Transp. Syst., 2014, 15, (6), pp. 23682377.
        . IEEE Trans. Intell. Transp. Syst. , 6 , 2368 - 2377
    9. 9)
      • T.-K. Kim , R. Cipolla .
        9. Kim, T.-K., Cipolla, R.: ‘Canonical correlation analysis of video volume tensors for action categorization and detection’, IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI), 2009, 31, (8), pp. 14151428.
        . IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) , 8 , 1415 - 1428
    10. 10)
      • E. Ohn-Bar , M. Trivedi .
        10. Ohn-Bar, E., Trivedi, M.: ‘In-vehicle hand activity recognition using integration of regions’. 2013 IEEE Intelligent Vehicles Symp. (IV), Gold Coast, Australia, 2013, pp. 10341039.
        . 2013 IEEE Intelligent Vehicles Symp. (IV) , 1034 - 1039
    11. 11)
      • E. Ohn-Bar , M.M. Trivedi .
        11. Ohn-Bar, E., Trivedi, M.M.: ‘A comparative study of color and depth features for hand gesture recognition in naturalistic driving settings’. IEEE 2015 Intelligent Vehicles Symp. (IV), Seoul, South Korea, 2015, pp. 845850.
        . IEEE 2015 Intelligent Vehicles Symp. (IV) , 845 - 850
    12. 12)
      • K. Thomas , S. Magand , A. Gepperth .
        12. Thomas, K., Magand, S., Gepperth, A., et al: ‘A light-weight real-time applicable hand gesture recognition system for automotive applications’. 2015 IEEE Intelligent Vehicles Symp. (IV), Seoul, South Korea, 2015, pp. 336342.
        . 2015 IEEE Intelligent Vehicles Symp. (IV) , 336 - 342
    13. 13)
      • G. Dong , Y. Yan , M. Xie .
        13. Dong, G., Yan, Y., Xie, M.: ‘Vision-based hand gesture recognition for human–vehicle interaction’. Proc. Int. Conf. Control, Automation and Computer Vision, 1998, pp. 151155.
        . Proc. Int. Conf. Control, Automation and Computer Vision , 151 - 155
    14. 14)
      • A. Rangesh , E. Ohn-Bar , M. Trivedi .
        14. Rangesh, A., Ohn-Bar, E., Trivedi, M.: ‘Long-term multi-cue tracking of hands in vehicles’, IEEE Trans. Intell. Transp. Syst., 2016, 17, (5), pp. 14831492.
        . IEEE Trans. Intell. Transp. Syst. , 5 , 1483 - 1492
    15. 15)
      • N. Neverova , C. Wolf , G.W. Taylor .
        15. Neverova, N., Wolf, C., Taylor, G.W., et al: ‘Multi-scale deep learning for gesture detection and localization’. Workshop at the European Conf. Computer Vision, Zurich, Switzerland, 2014, pp. 474490.
        . Workshop at the European Conf. Computer Vision , 474 - 490
    16. 16)
      • P. Molchanov , S. Gupta , K. Kim .
        16. Molchanov, P., Gupta, S., Kim, K., et al: ‘Hand gesture recognition with 3D convolutional neural networks’. Proc. IEEE Conf. Computer Vision and Pattern Recognition Workshops, Boston, MA, USA, 2015, pp. 17.
        . Proc. IEEE Conf. Computer Vision and Pattern Recognition Workshops , 1 - 7
    17. 17)
      • N. Deo , A. Rangesh , M. Trivedi .
        17. Deo, N., Rangesh, A., Trivedi, M.: ‘In-vehicle hand gesture recognition using hidden Markov models’. 2016 IEEE 19th Int. Conf. Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 2016, pp. 21792184.
        . 2016 IEEE 19th Int. Conf. Intelligent Transportation Systems (ITSC) , 2179 - 2184
    18. 18)
      • T. Bouchrika , M. Zaied , O. Jemai .
        18. Bouchrika, T., Zaied, M., Jemai, O., et al: ‘Neural solutions to interact with computers by hand gesture recognition’, Multimedia Tools Appl., 2014, 72, (3), pp. 949975.
        . Multimedia Tools Appl. , 3 , 949 - 975
    19. 19)
      • T. Bouchrika , O. Jemai , M. Zaied .
        19. Bouchrika, T., Jemai, O., Zaied, M., et al: ‘Rapid and efficient hand gestures recognizer based on classes discriminator wavelet networks’. Multimedia Tools Appl., 2017, pp. 122.
        . Multimedia Tools Appl. , 1 - 22
    20. 20)
      • J. Tompson , M. Stein , Y. Lecun .
        20. Tompson, J., Stein, M., Lecun, Y., et al: ‘Real-time continuous pose recovery of human hands using convolutional networks’, ACM Trans. Graph. (ToG), 2014, 33, (5), p. 169.
        . ACM Trans. Graph. (ToG) , 5 , 169
    21. 21)
      • F. Althoff , R. Lindl , L.D. Walchshausl .
        21. Althoff, F., Lindl, R., Walchshausl, L.D.: ‘Robust multimodal hand-and-head gesture recognition for controlling automotive infotainment systems’, VDI Ber., 2005, 1919, p. 187.
        . VDI Ber. , 187
    22. 22)
      • M.T. Harandi , C. Sanderson , A. Wiliem .
        22. Harandi, M.T., Sanderson, C., Wiliem, A., et al: ‘Kernel analysis over Riemannian manifolds for visual recognition of actions, pedestrians and textures’. 2012 IEEE Workshop on Applications of Computer Vision (WACV), Breckenridge, CO, USA, 2012, pp. 433439.
        . 2012 IEEE Workshop on Applications of Computer Vision (WACV) , 433 - 439
    23. 23)
      • L. Liu , L. Shao .
        23. Liu, L., Shao, L.: ‘Synthesis of spatio-temporal descriptors for dynamic hand gesture recognition using genetic programming’. IEEE 2013 Tenth IEEE Int. Conf. Workshops on Automatic Face and Gesture Recognition (FG), Shanghai, China, 2013, pp. 17.
        . IEEE 2013 Tenth IEEE Int. Conf. Workshops on Automatic Face and Gesture Recognition (FG) , 1 - 7
    24. 24)
      • Y. Yuan , H. Zheng , Z. Li .
        24. Yuan, Y., Zheng, H., Li, Z., et al: ‘Video action recognition with spatio-temporal graph embedding and spline modeling’. 2010 IEEE Int. Conf. Acoustics Speech and Signal Processing (ICASSP), Dallas, TX, USA, 2010, pp. 24222425.
        . 2010 IEEE Int. Conf. Acoustics Speech and Signal Processing (ICASSP) , 2422 - 2425
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0331
Loading

Related content

content/journals/10.1049/iet-its.2017.0331
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address