access icon free Deep learning-based real-time fine-grained pedestrian recognition using stream processing

Real-time recognition of pedestrian details can be very important in emergency situations for security reasons, such as traffic accidents identification from traffic video. However, this is challenging due to the needed accuracy of video data mining, and also the performance for real-time video processing. Here, the authors propose a solution for fine-grained pedestrian recognition in monitoring scenarios using deep learning and stream processing cloud computing, which is called DRPRS (deep learning-based real-time fine-grained pedestrian recognition using stream processing). The authors design an improved convolutional neural network (CNN) network called fine-CNN, which is a nine-layer neural network for detailed pedestrian recognition. In DRPRS, a pedestrian in a surveillance video is segmented and fine-grainedly recognised using improved single-shot detector and several fine-CNNs. DRPRS is supported by parallel mechanisms provided by Apache Storm stream processing framework. In addition, in order to further improve the recognition performance, a GPU-based scheduling algorithm is proposed to make full use of GPU resources in a cluster. The whole recognition process is deployed on a big video data processing platform to meet real-time requirements. DRPRS is extensively evaluated in terms of accuracy, fault tolerance, and performance, which show that the proposed approach is efficient.

Inspec keywords: video surveillance; neural nets; parallel processing; cloud computing; image segmentation; learning (artificial intelligence); image recognition; cluster computing; pedestrians

Other keywords: fine-CNN; video data mining; improved single-shot detector; big video data processing platform; surveillance video; DRPRS; traffic accidents identification; deep learning-based real-time fine-grained pedestrian recognition; traffic video; real-time video processing; stream processing cloud computing; GPU-based scheduling algorithm; improved convolutional neural network

Subjects: Parallel software; Knowledge engineering techniques; Computer vision and image processing techniques; Video signal processing; Neural computing techniques; Image recognition; Traffic engineering computing

References

    1. 1)
      • 4. Zhang, N., Donahue, J., Girshick, R., et al: ‘Part-based rcnns for fine-grained category detection’, 2014, 8689, pp. 834849.
    2. 2)
      • 13. Everingham, M., Van Gool, L., Williams, C.K.I., et al: ‘The PASCAL visual object classes challenge 2012 (VOCNN2012) results’, http://www.pascalnetwork.org/challenges/VOC/voCNN2012/workshop/index.html.
    3. 3)
      • 9. Zhang, W., Xu, L., Duan, P., et al: ‘A video cloud platform combing online and offline cloud computing technologies’, Pers. Ubiquitous Comput., 2015, 19, (7), pp. 10991110, http://dx.doi.org/10.1007/s00779-015-0879-3.
    4. 4)
      • 22. Xia, F., Zhu, J., Wang, P., et al: ‘Pose-guided human parsing with deep learned features’, Computer Science, 2015.
    5. 5)
      • 6. Liu, W., Anguelov, D., Erhan, D., et al: ‘SSD: single shot multibox detector’. European Conference on Computer Vision. Amsterdam, The Netherlands, 2016, pp. 2137.
    6. 6)
      • 11. Zhang, W., Duan, P., Gong, W., et al: ‘A load-aware pluggable cloud framework for real-time video processing’, IEEE Trans. Ind. Inform., 2016, 12, (6), pp. 21662176, https://doi.org/10.1109/TII.2016.2560802.
    7. 7)
      • 21. Wang, P., Shen, X., Lin, Z., et al: ‘Joint object and part segmentation using deep learned potentials’, IEEE International Conference on Computer Vision, Chile, 2015, pp. 15731581.
    8. 8)
      • 12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ‘Imagenet classification with deep convolutional neural networks’. Int. Conf. on Neural Information Processing Systems, 2012, pp. 10971105.
    9. 9)
      • 19. Long, J., Shelhamer, E., Darrell, T.: ‘Fully convolutional networks for semantic segmentation’. Computer Vision and Pattern Recognition, 2015, pp. 34313440.
    10. 10)
      • 2. Dollar, P., Wojek, C., Schiele, B., et al: ‘Pedestrian detection: an evaluation of the state of the art’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, (4), pp. 743761.
    11. 11)
      • 23. Redmon, J., Divvala, S., Girshick, R., et al: ‘You only look once: unified, real-time object detection’, Computer Science, 2016, pp. 779788.
    12. 12)
      • 7. Lcun, Y., Bottou, L., Bengio, Y., et al: ‘Gradient-based learning applied to document recognition’, Proc. IEEE, 1998, 86, (11), pp. 22782324.
    13. 13)
      • 16. Lin, T.Y., Roychowdhury, A., Maji, S.: ‘Bilinear CNN models for fine-grained visual recognition’, IEEE Int. Conf. on Computer Vision, 2015, pp. 14491457.
    14. 14)
      • 10. Zhang, W., Xu, L., Li, Z., et al: ‘A deep-intelligence framework for online video processing’, IEEE Softw., 2016, 33, (2), pp. 4451, http://dx.doi.org/10.1109/MS.2016.31.
    15. 15)
      • 26. Peng, B., Hosseini, M., Hong, Z., et al: ‘Rstorm: resource-aware scheduling in storm’. Proc. of the 16th Annual Middleware Conf. ACM, 2015, pp. 149161.
    16. 16)
      • 8. Liang, X., Xu, C., Shen, X., et al: ‘Human parsing with contextualized convolutional neural network’. IEEE Int. Conf. on Computer Vision, 2015, pp. 13861394.
    17. 17)
      • 20. Xia, F., Wang, P., Chen, X., et al: ‘Joint multi-person pose estimation and semantic part segmentation’. IEEE Conf. on Computer Vision and Pattern Recognition, 2017, pp. 60806089.
    18. 18)
      • 24. Ren, S., He, K., Girshick, R., et al: ‘Faster R-CNN: towards real-time object detection with region proposal networks’. IEEE Trans. Pattern Anal. Mach. Intell., 2016, 39, (6), pp. 11.
    19. 19)
      • 25. Aniello, L., Baldoni, R., Querzoni, L.: ‘Adaptive online scheduling in storm’. Proc. of the 7th ACM Int. Conf. on Distributed Event-Based Systems. ACM, 2013, pp. 207218.
    20. 20)
      • 27. Cardellini, V., Grassi, V., Lo Presti, F., et al: ‘Distributed QOS-aware scheduling in storm’. Proc. of the 9th ACM Int. Conf. on Distributed Event-Based Systems. ACM, 2015, pp. 344347.
    21. 21)
      • 15. Krause, J.: ‘Fine-grained recognition without part annotations’, IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 2015, pp. 55465555.
    22. 22)
      • 18. Weber, M., Stiefelhagen, R., Stiefelhagen, R.: ‘Part-based clothing segmentation for person retrieval’. IEEE Int. Conf. on Advanced Video and Signal-Based Surveillance, 2011, pp. 361366.
    23. 23)
      • 5. Yang, S., Bo, L., Wang, J., et al: ‘Unsupervised template learning for fine-grained object recognition’. Advances in Neural Information Processing Systems, 2012, pp. 31223130.
    24. 24)
      • 14. Krause, J., Stark, M., Deng, J., et al: ‘3d object representations for fine-grained categorization’. IEEE Int. Conf. on Computer Vision Workshops, 2013, pp. 554561.
    25. 25)
      • 17. Angelova, A., Zhu, S.: ‘Efficient object detection and segmentation for fine-grained recognition’. Computer Vision and Pattern Recognition, 2013, pp. 811818.
    26. 26)
      • 1. Foresti, G.L.: ‘Object recognition and tracking for remote video surveillance’, IEEE Trans. Circuits Syst. Video Technol., 1999, 9, (7), pp. 10451062.
    27. 27)
      • 3. Krause, J., Gebru, T., Deng, J., et al: ‘Learning features and parts for fine-grained recognition’. Int. Conf. on Pattern Recognition, 2014, pp. 2633.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0329
Loading

Related content

content/journals/10.1049/iet-its.2017.0329
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading