http://iet.metastore.ingenta.com
1887

Combining weather condition data to predict traffic flow: a GRU-based deep learning approach

Combining weather condition data to predict traffic flow: a GRU-based deep learning approach

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Traffic flow prediction is an essential component of the intelligent transportation management system. This study applies gated recurrent neural network to predict urban traffic flow considering weather conditions. Running results show that, under the review of weather influences, their method improves predictive accuracy and also decreases the prediction error rate. To their best knowledge, this is the first time that traffic flow is predicted in urban freeways in this particular way. This study examines it with respect to extensive weather influence under gated recurrent unit-based deep learning framework.

References

    1. 1)
      • 1. Smith, L.B., Demetsky, M.J.: ‘Short-term traffic flow prediction: neural network approach’, Transp. Res. Rec., 1994, 1453, pp. 98104.
    2. 2)
      • 2. Levin, M., Tsao, Y.D.: ‘On forecasting freeway occupancies and volumes (abridgment)’, Transp. Res. Rec., 1980, 773, pp. 4749.
    3. 3)
      • 3. Kamarianakis, Y., Prastacos, P.: ‘Forecasting traffic flow conditions in an urban network: comparison of multivariate and univariate approaches’, Transp. Res. Rec., 2003, (1857), pp. 7484..
    4. 4)
      • 4. Van Der Voort, M., Dougherty, M., Watson, S.: ‘Combining Kohonen maps with ARIMA time series models to forecast traffic flow’, Transp. Res. C Emerg. Technol., 1996, 4, (5), pp. 307318.
    5. 5)
      • 5. Lee, S., Fambro, D.: ‘Application of subset autoregressive integrated moving average model for short-term freeway traffic volume forecasting’, Transport. Res. Rec., 1999, 1678, pp. 179188.
    6. 6)
      • 6. Peter, Ä., Silvia, P.: ‘ARIMA vs. ARIMAX-which approach is better to analyze and forecast macroeconomic time series’. Proc. 30th Int. Conf. Mathematical Methods in Economics.Karviná, Czech Republic, 2012.
    7. 7)
      • 7. Mukherjee, S., Osuna, E., Girosi, F.: ‘Nonlinear prediction of chaotic time series using support vector machines’. Neural Networks for Signal Processing [1997] VII. Proc. 1997 IEEE Workshop. IEEE, Amelia Island, FL, USA, September 1997.
    8. 8)
      • 8. Zhang, Y., Liu, Y.: ‘Traffic forecasting using least squares support vector machines’, Transportmetrica, 2009, 5, (3), pp. 193213.
    9. 9)
      • 9. Bing, Q., Gong, B., Yang, Z., et al: ‘Short-term traffic flow local prediction based on combined kernel function relevance vector machine model’, Math. Probl. Eng., 2015, pp. 19.
    10. 10)
      • 10. Kotsiantis, S.B., Zaharakis, I., Pintelas, P.: ‘Supervised machine learning: a review of classification techniques’, 2007, pp. 324.
    11. 11)
      • 11. Loh, W.-Y.: ‘Classification and regression trees’, Wiley Interdiscip. Rev. Data Min. Knowl. Discov., 2011, 1, (1), pp. 1423.
    12. 12)
      • 12. Vlahogianni, E.I., Karlaftis, M.G., Golias, J.C.: ‘Short-term traffic forecasting: where we are and where we're going’, Transp. Res. C Emerg. Technol., 2014, 43, pp. 319.
    13. 13)
      • 13. Vlahogianni, E.I., Golias, J.C., Karlaftis, M.G.: ‘Short-term traffic forecasting: overview of objectives and methods’, Transp. Rev., 2004, 24, (5), pp. 533557.
    14. 14)
      • 14. Mori, U, Mendiburu, A, Ãlvarez, M, et al: ‘A review of travel time estimation and forecasting for advanced traveler information systems’, Transportmetrica A Transport Sci., 2015, 11, (2), pp. 119157.
    15. 15)
      • 15. Seabold, S., Perktold, J.: ‘Statsmodels: econometric and statistical modeling with python’. 9th Python in Science Conf., Austin, TX, USA, June 2010.
    16. 16)
      • 16. Washington, S., Karlaftis, M.G., Mannering, F.L.: ‘Statistical and econometric methods for transportation data analysis’ (Chapman & Hall/CRC Press, Boca Raton, 2010, 2nd edn.).
    17. 17)
      • 17. Tsirigotis, L., Vlahogianni, E.I., Karlaftis, M.G.: ‘Does information on weather affect the performance of short-term traffic forecasting models?Int. J. Intell. Transport. Syst. Res., 2012, 10, (1), pp. 110.
    18. 18)
      • 18. Müller, K.R., Smola, A.J., Rätsch, G., et al: ‘Predicting time series with support vector machines’, in Gerstner, W., Germond, A., Hasler, M., Nicoud, J. D. (eds.) Artificial neural networks-ICANN'97. ICANN 1997. Lecture notes in computer science, vol. 1327 (Springer, Berlin, Heidelberg, 1997), pp. 9991004.
    19. 19)
      • 19. Basak, D., Pal, S., Patranabis, D.C.: ‘Support vector regression’, Neural Inf. Process. Lett. Rev., 2007, 11, (10), pp. 203224.
    20. 20)
      • 20. das Chagas Moura, M., Zio, E., Lins, I.D., et al: ‘Failure and reliability prediction by support vector machines regression of time series data’, Reliabil. Eng. Syst. Saf., 2011, 96, (11), pp. 15271534.
    21. 21)
      • 21. Hou, Y., Edara, P., Sun, C.: ‘Traffic flow forecasting for urban work zones’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (4), pp. 17611770.
    22. 22)
      • 22. Breiman, L.: ‘Random forests’, Mach. Learn., 2001, 45, pp. 532.
    23. 23)
      • 23. Friedman, J., Hastie, T., Tibshirani, R.: ‘The elements of statistical learning’ vol. 1 (Springer Series in Statistics, New York, 2001).
    24. 24)
      • 24. Piramu Kailasam, S., Aruna Anushiya, K., Mohammed Sathik, M.: ‘Traffic flow prediction with big data using SAE'S algorithm’, IJCSMC, 2016, 5, (7), pp. 186193.
    25. 25)
      • 25. Sutskever, I., Martens, J., Hinton, G.E.: ‘Generating text with recurrent neural networks’. Proc. Int. Conf. Machine Learning (ICML-11). Bellevue, WA, USA, June 2011.
    26. 26)
      • 26. Lv, Y., Duan, Y., Kang, W., et al: ‘Traffic flow prediction with big data: a deep learning approach’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (2), pp. 865873.
    27. 27)
      • 27. Ma, X., Yu, H., Wang, Y., et al: ‘Large-scale transportation network congestion evolution prediction using deep learning theory’, PLoS One, 2015, 10, (3), p. e0119044.
    28. 28)
      • 28. Gers, F.: ‘Long short-term memory in recurrent neural networks’. Unpublished PhD dissertation, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland, 2001.
    29. 29)
      • 29. Chung, J., Gulcehre, C., Cho, K., et al: ‘Empirical evaluation of gated recurrent neural networks on sequence modeling’, arXiv preprint arXiv:1412.3555, 2014.
    30. 30)
      • 30. Fu, R., Zhang, Z., Li, L.: ‘Using LSTM and GRU neural network methods for traffic flow prediction’. Chinese Association of Automation (YAC), Youth Academic Annual Conf. IEEE, Wuhan, China, November, 2016.
    31. 31)
      • 31. Zhao, Z., Chen, W., Wu, X., et al: ‘LSTM network: a deep learning approach for short-term traffic forecast’, IET Intell. Transp. Syst., 2017, 11, (2), pp. 6875.
    32. 32)
      • 32. Jia, Y., Wu, J., Xu, M.: ‘Traffic flow prediction with rainfall impact using a deep learning method’, J. Adv. Transp., 2017, 2017, pp. 110.
    33. 33)
      • 33. Guo, J.: ‘Backpropagation through timeUnpublished manuscript (Harbin Institute of Technology, 2013).
    34. 34)
      • 34. Abadi, M., Barham, P., Chen, J., et al: ‘Tensorflow: a system for large-scale machine learning’, OSDI, 2016, 16, pp. 265283.
    35. 35)
      • 35. Available at https://keras.io/.
    36. 36)
      • 36. Kingma, D., Ba, J.: ‘Adam: a method for stochastic optimization’. arXiv preprint arXiv:1412.6980, 2014.
    37. 37)
      • 37. ‘Caltrans Performance Measurement System’. Available at http://pems.dot.ca.gov/, 23 December 2011.
    38. 38)
      • 38. National Oceanic and Atmospheric Administration’. Available athttps://www.ncdc.noaa.gov/cdo-web/datasets.
    39. 39)
      • 39. Rupp, M., Tkatchenko, A., Müller, K., et al: ‘Fast and accurate modeling of molecular atomization energies with machine learning’, Phys. Rev. Lett., 2012, 108, (5), p. 058301.
    40. 40)
      • 40. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: ‘Extreme learning machine: theory and applications’, Neurocomputing, 2006, 70, (1), pp. 489501.
    41. 41)
      • 41. Pedregosa, F., Varoquaux, G., Gramfort, A., et al: ‘Scikit-learn: machine learning in python’, J. Mach. Learn. Res., 2011, 12, pp. 28252830.
    42. 42)
      • 42. Polson, N.G., Sokolov, V.O.: ‘Deep learning for short-term traffic flow prediction’, Transp. Res. C, Emerg. Technol., 2017, 79, pp. 117.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0313
Loading

Related content

content/journals/10.1049/iet-its.2017.0313
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address