http://iet.metastore.ingenta.com
1887

Exploration and evaluation of individual difference to driving fatigue for high-speed railway: a parametric SVM model based on multidimensional visual cue

Exploration and evaluation of individual difference to driving fatigue for high-speed railway: a parametric SVM model based on multidimensional visual cue

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

High-speed rails have a significantly higher driving safety requirement than other public transport because of more passengers and faster speed. However, the particularity of train driving often leads to railway drivers more susceptible to drowsiness and fatigue, and this fatigue has a distinct personality. Here, the authors analyse the mechanism of individual fatigue generation of different drivers, and use eye movement data collected by non-contact means as an objective measurement, and combine subjective sleepiness assessment to reveal the existence of individual differences in fatigue in high-speed railway driving. Furthermore, a novel driver-specific feature weighted support vector machine (FWSVM) algorithm is proposed to handle the individual differences. In the FWSVM, features are assigned with different weights by the information gain to reflect classification importance and individual effects. The average accuracy of FWSVM is 90.98%, the average sensitivity is 92.01%, and the average specificity is 89.88%, which is better than the classical SVM. Such improvements are attributed to the quantitative evaluation of individual effects by the weighted features. These results can be used as a preliminary study to design a high-speed rail vehicle interface to prevent driver fatigue.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0289
Loading

Related content

content/journals/10.1049/iet-its.2017.0289
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address