http://iet.metastore.ingenta.com
1887

Exploration and evaluation of individual difference to driving fatigue for high-speed railway: a parametric SVM model based on multidimensional visual cue

Exploration and evaluation of individual difference to driving fatigue for high-speed railway: a parametric SVM model based on multidimensional visual cue

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

High-speed rails have a significantly higher driving safety requirement than other public transport because of more passengers and faster speed. However, the particularity of train driving often leads to railway drivers more susceptible to drowsiness and fatigue, and this fatigue has a distinct personality. Here, the authors analyse the mechanism of individual fatigue generation of different drivers, and use eye movement data collected by non-contact means as an objective measurement, and combine subjective sleepiness assessment to reveal the existence of individual differences in fatigue in high-speed railway driving. Furthermore, a novel driver-specific feature weighted support vector machine (FWSVM) algorithm is proposed to handle the individual differences. In the FWSVM, features are assigned with different weights by the information gain to reflect classification importance and individual effects. The average accuracy of FWSVM is 90.98%, the average sensitivity is 92.01%, and the average specificity is 89.88%, which is better than the classical SVM. Such improvements are attributed to the quantitative evaluation of individual effects by the weighted features. These results can be used as a preliminary study to design a high-speed rail vehicle interface to prevent driver fatigue.

References

    1. 1)
      • 1. Zhang, X., Li, J., Liu, Y., et al: ‘Design of a fatigue detection system for high-speed trains based on driver vigilance using a wireless wearable EEG’, Sensors, 2017, 17, (3), pp. 486497.
    2. 2)
      • 2. Federal Railroad Administration: ‘National rail safety action plan final report 2005–2008’, 2008.
    3. 3)
      • 3. National Transport Safety Board (NTSB): ‘Collision of BNSF coal train with the rear end of standing BNSF maintenance-of-way equipment train’ (NTSB, Red Oak, IA, 2011).
    4. 4)
      • 4. National Transport Safety Board (NTSB): ‘Railroad accident brief: Washington metropolitan area transit authority rear-end collision’ (NTSB, Falls Church, VA, 2009).
    5. 5)
      • 5. National Transport Safety Board (NTSB): ‘Chicago transit authority train collides with bumping post and escalator at o'Hare station’ (NTSB, Chicago, IL, 2014).
    6. 6)
      • 6. Chang, H.L., Ju, L.S.: ‘Effect of consecutive driving on accident risk: a comparison between passenger and freight train driving’, Accid. Anal. Prev., 2008, 40, (6), p. 1844.
    7. 7)
      • 7. Furukawa, T., Nakano, H., Hirayama, K., et al: ‘Snoring, obstructive sleep apnea and their health consequences (symposium/relationship between sleep and health care)’, Jpn. J. Psychosom. Med., 2011, 51, pp. 790798.
    8. 8)
      • 8. Zoer, I., Sluiter, J.K., Fringsdresen, M.H.W.: ‘Psychological work characteristics, psychological workload and associated psychological and cognitive requirements of train drivers’, Ergonomics, 2014, 57, (10), pp. 14731487.
    9. 9)
      • 9. Härmä, M., Sallinen, M., Ranta, R., et al: ‘The effect of an irregular shift system on sleepiness at work in train drivers and railway traffic controllers’, J. Sleep Res., 2010, 11, (2), pp. 141151.
    10. 10)
      • 10. Rail Safety and Standards board Ltd: ‘Fatigue and its contribution to railway incidents’, 2015.
    11. 11)
      • 11. Åkerstedt, T., Anund, A., Axelsson, J., et al: ‘Subjective sleepiness is a sensitive indicator of insufficient sleep and impaired waking function’, J. Sleep Res., 2014, 23, (3), pp. 242254.
    12. 12)
      • 12. Leeuwen, W.M.A.V., Anund, A., Fors, C., et al: ‘Countermeasures for fatigue in transportation – a review of existing methods for drivers on road, rail, sea and in aviation’, J. Urol., 2015, 181, (4), pp. 453453.
    13. 13)
      • 13. Tsao, L., Chang, J., Ma, L.: ‘Fatigue of Chinese railway employees and its influential factors: structural equation modelling’, Appl. Ergon., 2017, 62, pp. 131141.
    14. 14)
      • 14. Cabon, P., Coblentz, A., Mollard, R., et al: ‘Human vigilance in railway and long-haul flight operation’, Ergonomics, 1993, 36, (9), pp. 10191033.
    15. 15)
      • 15. Spring, P., McIntosh, A., Caponecchia, C., et al: ‘Level of automation: effects on train driver vigilance’. 3rd Int. Conf. on Rail Human Factors, Lille, Paris, 2009.
    16. 16)
      • 16. Phillips, R.O.: ‘What is fatigue and how does it affect the safety performance of human transport operators?’. Tøi Report, 2014.
    17. 17)
      • 17. Dunn, N., Williamson, A.: ‘Driving monotonous routes in a train simulator: the effect of task demand on driving performance and subjective experience’, Ergonomics, 2012, 55, (9), p. 997.
    18. 18)
      • 18. Darwent, D., Lamond, N., Dawson, D.: ‘The sleep and performance of train drivers during an extended freight-haul operation’, Appl. Ergon., 2008, 39, (5), pp. 614622.
    19. 19)
      • 19. Dorrian, J., Baulk, S.D., Dawson, D.: ‘Work hours, workload, sleep and fatigue in Australian rail industry employees’, Appl. Ergon., 2011, 42, (2), pp. 202209.
    20. 20)
      • 20. Nosal, P.: ‘Automatic train protection and stop system patent EP2210791’. 2010.
    21. 21)
      • 21. Ingre, M., Åkerstedt, T., Peters, B., et al: ‘Subjective sleepiness, simulated driving performance and blink duration: examining individual differences’, J. Sleep Res., 2006, 15, (1), pp. 4753.
    22. 22)
      • 22. Buckelmüller, J., Landolt, H.P., Stassen, H.H., et al: ‘Trait-like individual differences in the human sleep electroencephalogram’, Neuroscience, 2006, 138, (1), pp. 351356.
    23. 23)
      • 23. Van Dongen, H.P., Vitellaro, K.M., Dinges, D.F.: ‘Individual differences in adult human sleep and wakefulness: leitmotif for a research agenda’, Sleep, 2005, 28, (4), pp. 479496.
    24. 24)
      • 24. Wang, X., Xu, C.: ‘Driver drowsiness detection based on non-intrusive metrics considering individual specifics’, Accid. Anal. Prev., 2016, 95, (Pt B), pp. 350357.
    25. 25)
      • 25. Borghini, G., Astolfi, L., Vecchiato, G., et al: ‘Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness’, Neurosci. Biobehav. Rev., 2014, 44, pp. 5875.
    26. 26)
      • 26. Dawson, D., Searle, A.K., Paterson, J.L.: ‘Look before you (s)leep: evaluating the use of fatigue detection technologies within a fatigue risk management system for the road transport industry’, Sleep Med. Rev., 2014, 18, (2), pp. 141152.
    27. 27)
      • 27. Variables, R.: ‘In-vehicle prediction of truck driver sleepiness: lane position variables, Masters ThesisLuleå Technical University, 2007.
    28. 28)
      • 28. Forsman, P.M., Vila, B.J., Short, R.A., et al: ‘Efficient driver drowsiness detection at moderate levels of drowsiness’, Accid. Anal. Prev., 2013, 50, (1), pp. 341350.
    29. 29)
      • 29. Satzoda, R.K., Trivedi, M.M.: ‘Drive analysis using vehicle dynamics and vision-based lane semantics’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (1), pp. 918.
    30. 30)
      • 30. Johnson, R.R., Popovic, D.P., Olmstead, R.E., et al: ‘Drowsiness/alertness algorithm development and validation using synchronized EEG and cognitive performance to individualize a generalized model’, Biol. Psychol., 2011, 87, (2), pp. 241250.
    31. 31)
      • 31. Sauvet, F., Bougard, C., Coroenne, M., et al: ‘In-flight automatic detection of vigilance states using a single EEG channel’, IEEE Trans. Biomed. Eng., 2014, 61, (12), pp. 28402847.
    32. 32)
      • 32. Qian, D., Wang, B., Qing, X., et al: ‘Drowsiness detection by Bayesian-copula discriminant classifier based on EEG signals during daytime short nap’, IEEE Trans. Biomed. Eng., 2017, 64, (4), pp. 743754.
    33. 33)
      • 33. Picard, R.: ‘Smartcar: detecting driver stress’. Int. Conf. on Pattern Recognition, 2000, vol. 4, pp. 218221.
    34. 34)
      • 34. Dinges, D.F., Grace, R.: ‘PERCLOS: a valid psychophysiological measure of alertness as assessed by psychomotor vigilance’, Tech Brief, 1998.
    35. 35)
      • 35. Bergasa, L.M., Nuevo, J., Sotelo, M.A., et al: ‘Real-time system for monitoring driver vigilance’, IEEE Trans. Intell. Transp. Syst., 2006, 7, (1), pp. 6377.
    36. 36)
      • 36. Daza, I.G., Bergasa, L.M., Bronte, S., et al: ‘Fusion of optimized indicators from advanced driver assistance systems (ADAS) for driver drowsiness detection’, Sensors, 2014, 14, (1), p. 1106.
    37. 37)
      • 37. Schleicher, R., Galley, N., Briest, S., et al: ‘Blinks and saccades as indicators of fatigue in sleepiness warnings: looking tired?’, Ergonomics, 2008, 51, (7), pp. 9821010.
    38. 38)
      • 38. Körber, M., Cingel, A., Zimmermann, M., et al: ‘Vigilance decrement and passive fatigue caused by monotony in automated driving’, Procedia Manuf., 2015, 3, pp. 24032409.
    39. 39)
      • 39. Nishiyama, J., Tanida, K., Kusumi, M., et al: ‘The pupil as a possible premonitor of drowsiness’. Int. Conf. of the IEEE Engineering in Medicine and Biology Society, 2007, pp. 15861589.
    40. 40)
      • 40. Lowenstein, O., Feinberg, R., Loewenfeld, I.E.: ‘Pupillary movements during acute and chronic fatigue a new test for the objective evaluation of tiredness’, Invest. Ophthalmol., 1963, 2, (2), pp. 138157.
    41. 41)
      • 41. Rowland, L.M., Thomas, M.L., Thorne, D.R., et al: ‘Oculomotor responses during partial and total sleep deprivation’, Aviat. Space Environ. Med., 2005, 76, (7 Suppl.), pp. 104113.
    42. 42)
      • 42. Eskandarian, A., Mortazavi, A.: ‘Evaluation of a smart algorithm for commercial vehicle driver drowsiness detection’. Intelligent Vehicles Symp., 2007, pp. 553559.
    43. 43)
      • 43. Mandal, B., Li, L., Wang, G.S., et al: ‘Towards detection of bus driver fatigue based on robust visual analysis of eye state’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (3), pp. 545557.
    44. 44)
      • 44. Jin, L., Niu, Q., Jiang, Y., et al: ‘Driver sleepiness detection system based on eye movements variables’, Adv. Mech. Eng., 2013, 2013, (5), pp. 17.
    45. 45)
      • 45. Zhao, C., Zhang, X., Zhang, B., et al: ‘Driver's fatigue expressions recognition by combined features from pyramid histogram of oriented gradient and contourlet transform with random subspace ensembles’, IET Intell. Transp. Syst., 2013, 7, (1), pp. 3645.
    46. 46)
      • 46. Akerstedt, T., Ingre, M., Kecklund, G., et al: ‘Reaction of sleepiness indicators to partial sleep deprivation, time of day and time on task in a driving simulator – the DROWSI project’, J. Sleep Res., 2010, 19, (2), pp. 298309.
    47. 47)
      • 47. Johns, D.M.W., Tucker, A.: ‘Monitoring eye and eyelid movements by infrared reflectance oculography to measure drowsiness in drivers’, Somnologie – Schlafforschung und Schlafmedizin, 2007, 11, (4), pp. 234242.
    48. 48)
      • 48. ‘Railway Locomotive Driver's Training and Test Center’. Available at http://www.rdtec.org/Index_index.action, accessed 20 May 2015.
    49. 49)
      • 49. Åkerstedt, T., Gillberg, M.: ‘Subjective and objective sleepiness in the active individual’, Int. J. Neurosci., 1990, 52, (1–2), pp. 2937.
    50. 50)
      • 50. K, K., M, T., T, A., et al: ‘Validation of the Karolinska sleepiness scale against performance and EEG variables’, Clin. Neurophysiol., 2006, 117, (7), pp. 15741581.
    51. 51)
      • 51. Vapnik, V.N.: ‘The nature of statistical learning theory’, 1995, pp. 15641564.
    52. 52)
      • 52. Chen, Y., Hao, Y.: ‘A feature weighted support vector machine and K-nearest neighbor algorithm for stock market indices prediction’, Expert Syst. Appl., 2017, 80, pp. 340355.
    53. 53)
      • 53. Jin, L., Niu, Q., Hou, H., et al: ‘Driver cognitive distraction detection using driving performance measures’, Discret. Dyn. Nat. Soc., 2012, 2012, pp. 15551565.
    54. 54)
      • 54. Grandchamp, R., Braboszcz, C., Delorme, A.: ‘Oculometric variations during mind wandering’, Front. Psychol., 2014, 5, (1), p. 31.
    55. 55)
      • 55. Pedrotti, M., Lei, S., Dzaack, J., et al: ‘A data-driven algorithm for offline pupil signal preprocessing and eyeblink detection in low-speed eye-tracking protocols’, Beh. Res. Meth., 2011, 43, (2), pp. 372383.
    56. 56)
      • 56. Geangu, E., Hauf, P., Bhardwaj, R., et al: ‘Infant pupil diameter changes in response to others’ positive and negative emotions’, Plos One, 2011, 6, (11), p. e27132.
    57. 57)
      • 57. Komogortsev, O.V., Gobert, D.V., Jayarathna, S., et al: ‘Standardization of automated analyses of oculomotor fixation and saccadic behaviors’, IEEE Trans. Biomed. Eng., 2010, 57, (11), pp. 26352645.
    58. 58)
      • 58. Hupé, J.M., Lamirel, C., Lorenceau, J.: ‘Pupil dynamics during bistable motion perception’, J. Vision, 2009, 9, (7), p. 10.
    59. 59)
      • 59. ‘Tobii Studio 3.3 User Guide’. Available at http://www.tobiipro.com/product-listing/tobii-pro-x2-60/, accessed 17 March 2016.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0289
Loading

Related content

content/journals/10.1049/iet-its.2017.0289
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address