http://iet.metastore.ingenta.com
1887

Data analytics approach for train timetable performance measures using automatic train supervision data

Data analytics approach for train timetable performance measures using automatic train supervision data

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Motivated by the practical requirements for timetable evaluation in China and the fact that massive train record data are collected but remain largely underused, this study presents a data analytics approach for train timetable performance measures using automatic train supervision data. A data preparation process with data cleaning and matching methods is developed for further analysis. The data analysis consists of three components: a waiting time assessment method that uses visual headway mismatching degree to estimate the effect on waiting time; a process time estimation method that introduces spatiotemporal distribution and statistical techniques to mine the data and identify practical characteristics of dwell time and running time; and an arrival punctuality examination method which checks on-time arrival performance. The proposed data analytics approach is demonstrated through a case study of Shanghai Metro. Major findings on timetable performance, involving three aspects of timetable parameters, are presented. The relevant data analytics framework and findings have operational and planning implications for urban rail transit authorities and operators with regard to evaluating timetable parameters and improving the service quality.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0287
Loading

Related content

content/journals/10.1049/iet-its.2017.0287
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address