Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Evaluating cyclist patterns using GPS data from smartphones

GPS traces from cyclists are used to retrieve their path by matching the traces to a detailed, attribute-rich urban road network. The main objective of this research is to explore the influence of road network characteristics on the cyclist's path choice behaviour. The dataset used in this study consists of ∼27,500 GPS traces, which cyclists have recorded in Bologna, Italy, over a period of 4 weeks using a special smartphone application. Work trips are extracted from all traces by selecting only straight trips during the mornings of work days. After matching the traces to a specially prepared road map, the distributions of trip length, trip time and trip speed are determined. The shortest possible path between origin and destination of each trip is determined and compared with the chosen path. Results show that most cyclists tend to use the shortest path and accept only small detours. However, comparing the shortest path with the chosen path for each trip, it is possible to identify the network characteristics causing the cyclists to deviate from the shortest path. The main results of this study indicate that the chosen paths contain more cycleways and less intersections compared with the respective shortest paths.

References

    1. 1)
      • 3. Howard, C., Burns, E.K.: ‘Cycling to work in phoenix: route choice, travel behavior, and commuter characteristics’, Trans. Res. Rec., 2001, 1773, pp. 3946.
    2. 2)
      • 29. Schweizer, J.: ‘Sumopy: an advanced simulation suite for sumo’, Lecture Notes Comput. Sci. (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, 8594, pp. 7182.
    3. 3)
      • 7. Landis, B.W., Vattikuti, V.R., Brannick, M.T.: ‘Real-time human perceptions: toward a bicycle level of service’, Trans. Res. Rec., 1997, 1578, pp. 119126.
    4. 4)
      • 30. Khatri, R., Cherry, C.R., Nambisan, S.S., et al: ‘Modeling route choice of utilitarian bikeshare users with GPS data’, Trans. Res. Rec., 2016, 2587, pp. 141149.
    5. 5)
      • 34. Mantuano, A., Bernardi, S., Rupi, F.: ‘Cyclist gaze behavior in urban space: An eye-tracking experiment on the bicycle network of Bologna’, Case Stud. Transp. Policy, 2017, 5, (2), pp. 408416.
    6. 6)
      • 6. Pucher, J., Komanoff, C., Schimek, P.: ‘Bicycling renaissance in North America?: recent trends and alternative policies to promote bicycling’, Transp. Res. A Policy Pract., 1999, 33, (7–8), pp. 625654.
    7. 7)
      • 15. Winters, M., Davidson, G., Kao, D., et al: ‘Motivators and deterrents of bicycling: comparing influences on decisions to ride’, Transportation, 2011, 38, pp. 153168.
    8. 8)
      • 25. ISTAT Statistics (2011). Available at https://www.istat.it/en/products/databases.
    9. 9)
      • 28. Krajzewicz, D., Erdmann, J., Behrisch, M., et al: ‘Recent development and applications of SUMO – simulation of urban mobility’, Int. J. Adv. Syst. Meas., 2012, 5, (3&4), pp. 128138.
    10. 10)
      • 19. Dill, J.: ‘Bicycling for transportation and health: The role of infrastructure’, J. Public Health Policy, 2009, 30, pp. 95110.
    11. 11)
      • 22. Menghini, G., Carrasco, N., Schüssler, N., et al: ‘Route choice of cyclists in Zurich’, Trans. Res. Part A, 2010, 44, pp. 754765.
    12. 12)
      • 23. Hood, J., Sall, E., Charlton, B.: ‘A GPS-based bicycle route choice model for San Francisco, California’, Trans. Lett.: Int. J. Transp. Res., 2011, 3, pp. 6375.
    13. 13)
      • 17. Schweizer, J., Rupi, F.: ‘Performance evaluation of extreme bicycle scenarios’, Procedia-Social Behav. Sci., 2014, 111, pp. 508517.
    14. 14)
      • 35. Bernardi, S., Krizek, K.J., Rupi, F.: ‘Quantifying the role of disturbances and speeds on separated bicycle facilities’, J. Transp. Land Use, 2016, 9, (2), pp. 105119.
    15. 15)
      • 16. Forsyth, A., Krizek, K.J., Agrawal, A.W., et al: ‘Reliability testing of the pedestrian and bicycling survey (PABS) method’, J. Phys. Activity Health, 2012, 9, pp. 677688.
    16. 16)
      • 11. Sener, I.N., Eluru, N., Bhat, C.R.: ‘An analysis of bicycle route choice preferences in Texas, US’, Trans., 2009, 36, pp. 511539.
    17. 17)
      • 5. Pucher, J., Buehler, R.: ‘Making cycling irresistible: lessons from the Netherlands, Denmark and Germany’, Transport Rev., 2008, 28, (4), pp. 495528.
    18. 18)
      • 14. Winters, M., Brauer, M., Setton, E.M., et al: ‘Built environment influences on healthy transportation choices: bicycling versus driving’, J. Urban Health: Bull. New York Acad. Medi., 2010b, 87, (6), pp. 969993.
    19. 19)
      • 13. Tilahun, N.Y., Levinson, D.M., Krizek, K.J.: ‘Trails, lanes, or traffic: valuing bicycle facilities with an adaptive stated preference survey’, Trans. Res. Part A, 2007, 41, pp. 287301.
    20. 20)
      • 1. Dill, J., Carr, T.: ‘Bicycle commuting facilities in major US cities: if you build them commuters will use them – another look’, Trans. Res. Rec., 2003, 1828, pp. 116123.
    21. 21)
      • 8. Axhausen, K.W., Smith, R.L.: ‘Bicyclist link evaluation: a stated preference approach’, Trans. Res. Rec., 1986, 1085, pp. 725.
    22. 22)
      • 32. Schweizer, J., Bernardi, S., Rupi, F.: ‘Map-matching algorithm applied to bicycle global positioning system traces in Bologna’, ITE Intell. Transp. Syst., 2016, 10, (4), pp. 244250.
    23. 23)
      • 20. Broach, J., Dill, J., Gliebe, J.: ‘Where do cyclists ride? A path choice model developed with revealed preference GPS data’, Trans. Res. Part A, 2012, 46, pp. 17301740.
    24. 24)
      • 2. Nelson, A.C., Allen, D.: ‘If you build them commuters will use them – association between bicycle facilities and bicycle commuting’, Trans. Res. Rec., 1997, 1578, pp. 7983.
    25. 25)
      • 12. Stinson, M.A., Bhat, C.R.: ‘Commuter bicyclist route choice: analysis using a stated preference survey’, Trans. Res. Rec., 2003, 1828, pp. 107115.
    26. 26)
      • 31. Marchal, F, Hackney, J.K., Axhausen, K.W.: ‘Efficient map matching of large global positioning system data sets: test on speed-monitoring experiment in Zurich’, Trans. Res. Rec., 2005, 1935, pp. 93100.
    27. 27)
      • 18. Aultman-Hall, L., Hall, F., Baetz, B.: ‘Analysis of bicycle commuter paths using geographic information systems: implications for bicycle planning’, Trans. Res. Rec., 1997, 1578, (1), pp. 102110.
    28. 28)
      • 36. Winters, M., Teschke, K.: ‘Route preferences among adults in the near market for bicycling: findings of the cycling in cities study’, Am. J. Health Promot., 2010, 25, (1), pp. 4047.
    29. 29)
      • 37. Wahlgren, L., Schantz, P.: ‘Bikeability and methodological issues using the active commuting path environment scale (ACRES) in a metropolitan setting’, BMC Med. Res. Methodol., 2011, pp. 120.
    30. 30)
      • 27. Schweizer, J., Rupi, F.: ‘Map matching and cycling infrastructure analyses with SUMO and python’. Conf. Proc. SUMO2014 Modeling Mobility with Open Data, 2015. Available at http://www.sumo.dlr.de/2014/Proceeding_SUMO2014_15+16May2014_Berlin-Adlershof.pdf.
    31. 31)
      • 9. Hunt, J.D., Abraham, J.E.: ‘Influences on bicycle use’, Transportation, 2007, 34, pp. 453470.
    32. 32)
      • 26. Winters, M., Brauer, M., Setton, E.M., et al: ‘Mapping bikeability: a spatial tool to support sustainable travel’, Environ. Plan. B: Plan. Design, 2013, 40, (5), pp. 865883.
    33. 33)
      • 4. Parkin, J., Wardman, M., Page, M.: ‘Estimation of the determinants of bicycle mode share for the journey to work using census data’, Trans., 2008, 35, pp. 93109.
    34. 34)
      • 24. Municipality of Bologna (2017). Available at http://www.comune.bologna.it/iperbole/piancont/dati_statistici/indice_dati_statistici.htm.
    35. 35)
      • 10. Krizek, K.J.: ‘Two approaches to valuing some of bicycle facilities’ presumed benefits’, J. Am. Plan. Assoc., 2006, 72, (3), pp. 309320.
    36. 36)
      • 21. Zimmermann, M., Mai, T., Frejinger, E.: ‘Bike route choice modeling using GPS data without choice sets of paths’, Trans. Res. Part C, 2017, 75, pp. 183196.
    37. 37)
      • 33. Bernardi, S., Rupi, F.: ‘An analysis of bicycle travel speed and disturbances on off-street and on-street facilities’, Transp. Res. Procedia, 2015, 5, pp. 8294.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0285
Loading

Related content

content/journals/10.1049/iet-its.2017.0285
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address