http://iet.metastore.ingenta.com
1887

Evaluating cyclist patterns using GPS data from smartphones

Evaluating cyclist patterns using GPS data from smartphones

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

GPS traces from cyclists are used to retrieve their path by matching the traces to a detailed, attribute-rich urban road network. The main objective of this research is to explore the influence of road network characteristics on the cyclist's path choice behaviour. The dataset used in this study consists of ∼27,500 GPS traces, which cyclists have recorded in Bologna, Italy, over a period of 4 weeks using a special smartphone application. Work trips are extracted from all traces by selecting only straight trips during the mornings of work days. After matching the traces to a specially prepared road map, the distributions of trip length, trip time and trip speed are determined. The shortest possible path between origin and destination of each trip is determined and compared with the chosen path. Results show that most cyclists tend to use the shortest path and accept only small detours. However, comparing the shortest path with the chosen path for each trip, it is possible to identify the network characteristics causing the cyclists to deviate from the shortest path. The main results of this study indicate that the chosen paths contain more cycleways and less intersections compared with the respective shortest paths.

References

    1. 1)
      • 1. Dill, J., Carr, T.: ‘Bicycle commuting facilities in major US cities: if you build them commuters will use them – another look’, Trans. Res. Rec., 2003, 1828, pp. 116123.
    2. 2)
      • 2. Nelson, A.C., Allen, D.: ‘If you build them commuters will use them – association between bicycle facilities and bicycle commuting’, Trans. Res. Rec., 1997, 1578, pp. 7983.
    3. 3)
      • 3. Howard, C., Burns, E.K.: ‘Cycling to work in phoenix: route choice, travel behavior, and commuter characteristics’, Trans. Res. Rec., 2001, 1773, pp. 3946.
    4. 4)
      • 4. Parkin, J., Wardman, M., Page, M.: ‘Estimation of the determinants of bicycle mode share for the journey to work using census data’, Trans., 2008, 35, pp. 93109.
    5. 5)
      • 5. Pucher, J., Buehler, R.: ‘Making cycling irresistible: lessons from the Netherlands, Denmark and Germany’, Transport Rev., 2008, 28, (4), pp. 495528.
    6. 6)
      • 6. Pucher, J., Komanoff, C., Schimek, P.: ‘Bicycling renaissance in North America?: recent trends and alternative policies to promote bicycling’, Transp. Res. A Policy Pract., 1999, 33, (7–8), pp. 625654.
    7. 7)
      • 7. Landis, B.W., Vattikuti, V.R., Brannick, M.T.: ‘Real-time human perceptions: toward a bicycle level of service’, Trans. Res. Rec., 1997, 1578, pp. 119126.
    8. 8)
      • 8. Axhausen, K.W., Smith, R.L.: ‘Bicyclist link evaluation: a stated preference approach’, Trans. Res. Rec., 1986, 1085, pp. 725.
    9. 9)
      • 9. Hunt, J.D., Abraham, J.E.: ‘Influences on bicycle use’, Transportation, 2007, 34, pp. 453470.
    10. 10)
      • 10. Krizek, K.J.: ‘Two approaches to valuing some of bicycle facilities’ presumed benefits’, J. Am. Plan. Assoc., 2006, 72, (3), pp. 309320.
    11. 11)
      • 11. Sener, I.N., Eluru, N., Bhat, C.R.: ‘An analysis of bicycle route choice preferences in Texas, US’, Trans., 2009, 36, pp. 511539.
    12. 12)
      • 12. Stinson, M.A., Bhat, C.R.: ‘Commuter bicyclist route choice: analysis using a stated preference survey’, Trans. Res. Rec., 2003, 1828, pp. 107115.
    13. 13)
      • 13. Tilahun, N.Y., Levinson, D.M., Krizek, K.J.: ‘Trails, lanes, or traffic: valuing bicycle facilities with an adaptive stated preference survey’, Trans. Res. Part A, 2007, 41, pp. 287301.
    14. 14)
      • 14. Winters, M., Brauer, M., Setton, E.M., et al: ‘Built environment influences on healthy transportation choices: bicycling versus driving’, J. Urban Health: Bull. New York Acad. Medi., 2010b, 87, (6), pp. 969993.
    15. 15)
      • 15. Winters, M., Davidson, G., Kao, D., et al: ‘Motivators and deterrents of bicycling: comparing influences on decisions to ride’, Transportation, 2011, 38, pp. 153168.
    16. 16)
      • 16. Forsyth, A., Krizek, K.J., Agrawal, A.W., et al: ‘Reliability testing of the pedestrian and bicycling survey (PABS) method’, J. Phys. Activity Health, 2012, 9, pp. 677688.
    17. 17)
      • 17. Schweizer, J., Rupi, F.: ‘Performance evaluation of extreme bicycle scenarios’, Procedia-Social Behav. Sci., 2014, 111, pp. 508517.
    18. 18)
      • 18. Aultman-Hall, L., Hall, F., Baetz, B.: ‘Analysis of bicycle commuter paths using geographic information systems: implications for bicycle planning’, Trans. Res. Rec., 1997, 1578, (1), pp. 102110.
    19. 19)
      • 19. Dill, J.: ‘Bicycling for transportation and health: The role of infrastructure’, J. Public Health Policy, 2009, 30, pp. 95110.
    20. 20)
      • 20. Broach, J., Dill, J., Gliebe, J.: ‘Where do cyclists ride? A path choice model developed with revealed preference GPS data’, Trans. Res. Part A, 2012, 46, pp. 17301740.
    21. 21)
      • 21. Zimmermann, M., Mai, T., Frejinger, E.: ‘Bike route choice modeling using GPS data without choice sets of paths’, Trans. Res. Part C, 2017, 75, pp. 183196.
    22. 22)
      • 22. Menghini, G., Carrasco, N., Schüssler, N., et al: ‘Route choice of cyclists in Zurich’, Trans. Res. Part A, 2010, 44, pp. 754765.
    23. 23)
      • 23. Hood, J., Sall, E., Charlton, B.: ‘A GPS-based bicycle route choice model for San Francisco, California’, Trans. Lett.: Int. J. Transp. Res., 2011, 3, pp. 6375.
    24. 24)
      • 24. Municipality of Bologna (2017). Available at http://www.comune.bologna.it/iperbole/piancont/dati_statistici/indice_dati_statistici.htm.
    25. 25)
      • 25. ISTAT Statistics (2011). Available at https://www.istat.it/en/products/databases.
    26. 26)
      • 26. Winters, M., Brauer, M., Setton, E.M., et al: ‘Mapping bikeability: a spatial tool to support sustainable travel’, Environ. Plan. B: Plan. Design, 2013, 40, (5), pp. 865883.
    27. 27)
      • 27. Schweizer, J., Rupi, F.: ‘Map matching and cycling infrastructure analyses with SUMO and python’. Conf. Proc. SUMO2014 Modeling Mobility with Open Data, 2015. Available at http://www.sumo.dlr.de/2014/Proceeding_SUMO2014_15+16May2014_Berlin-Adlershof.pdf.
    28. 28)
      • 28. Krajzewicz, D., Erdmann, J., Behrisch, M., et al: ‘Recent development and applications of SUMO – simulation of urban mobility’, Int. J. Adv. Syst. Meas., 2012, 5, (3&4), pp. 128138.
    29. 29)
      • 29. Schweizer, J.: ‘Sumopy: an advanced simulation suite for sumo’, Lecture Notes Comput. Sci. (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, 8594, pp. 7182.
    30. 30)
      • 30. Khatri, R., Cherry, C.R., Nambisan, S.S., et al: ‘Modeling route choice of utilitarian bikeshare users with GPS data’, Trans. Res. Rec., 2016, 2587, pp. 141149.
    31. 31)
      • 31. Marchal, F, Hackney, J.K., Axhausen, K.W.: ‘Efficient map matching of large global positioning system data sets: test on speed-monitoring experiment in Zurich’, Trans. Res. Rec., 2005, 1935, pp. 93100.
    32. 32)
      • 32. Schweizer, J., Bernardi, S., Rupi, F.: ‘Map-matching algorithm applied to bicycle global positioning system traces in Bologna’, ITE Intell. Transp. Syst., 2016, 10, (4), pp. 244250.
    33. 33)
      • 33. Bernardi, S., Rupi, F.: ‘An analysis of bicycle travel speed and disturbances on off-street and on-street facilities’, Transp. Res. Procedia, 2015, 5, pp. 8294.
    34. 34)
      • 34. Mantuano, A., Bernardi, S., Rupi, F.: ‘Cyclist gaze behavior in urban space: An eye-tracking experiment on the bicycle network of Bologna’, Case Stud. Transp. Policy, 2017, 5, (2), pp. 408416.
    35. 35)
      • 35. Bernardi, S., Krizek, K.J., Rupi, F.: ‘Quantifying the role of disturbances and speeds on separated bicycle facilities’, J. Transp. Land Use, 2016, 9, (2), pp. 105119.
    36. 36)
      • 36. Winters, M., Teschke, K.: ‘Route preferences among adults in the near market for bicycling: findings of the cycling in cities study’, Am. J. Health Promot., 2010, 25, (1), pp. 4047.
    37. 37)
      • 37. Wahlgren, L., Schantz, P.: ‘Bikeability and methodological issues using the active commuting path environment scale (ACRES) in a metropolitan setting’, BMC Med. Res. Methodol., 2011, pp. 120.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0285
Loading

Related content

content/journals/10.1049/iet-its.2017.0285
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address