http://iet.metastore.ingenta.com
1887

Data-driven approach for identifying spatiotemporally recurrent bottlenecks

Data-driven approach for identifying spatiotemporally recurrent bottlenecks

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Identification of recurrent bottlenecks is an effective way to hone an appropriate investment in current facilities to relieve congestion. Furthermore, it would enable the ranking or prioritisation of bottlenecks since bottleneck removal and its associated impact alleviation are hampered by limited sources. It is imperative that transportation jurisdiction understand and identify the basis for ranking bottlenecks by exploring: how often they are active; how long it takes the congestion to disappear; and how many miles of road are affected. Previous bottleneck identification schemes have focused on identifying congestion with little attention to distinguishing the recurrent level at the same ‘bottleneck’ location. In contrast to traditional schemes, a data-driven approach for identifying recurrent bottlenecks is introduced, using probe vehicle speed reports. The historical spatiotemporal characteristics of bottlenecks are investigated through a comprehensive analysis of 2253 miles of all state-wide interstates in North Carolina. Using the characteristics determined the recurrent bottleneck locations with a historical time span of bottleneck activation are revealed and tested. The findings of the proposed identification schemes generate critical information in order to quantify and diagnose a bottleneck and its associated impact area.

References

    1. 1)
      • 1. Cooner, S.A., Ranft, S.E., Zimmerman, C.: ‘An agency guide on overcoming unique challenges to localized congestion reduction projects’ (US Department of Transportation, 2011).
    2. 2)
      • 2. Bertini, R.L., Leal, M.T.: ‘Empirical study of traffic features at a freeway lane drop’, J. Transp. Eng., 2005, 131, (6), pp. 397407.
    3. 3)
      • 3. Jia, A., Williams, B.M., Rouphail, N.M.: ‘Identification and calibration of site-specific stochastic freeway breakdown and queue discharge’, Transp. Res. Rec., J. Transp. Res. Board, 2010.
    4. 4)
      • 4. Lorenz, M., Elefteriadou, L.: ‘Defining freeway capacity as function of breakdown probability’, Transp. Res. Rec., J. Transp. Res. Board, 2001, 1776, pp. 4351.
    5. 5)
      • 5. Elefteriadou, L., Roess, R. P., McShane, W. R.: ‘Probabilistic nature of breakdown at freeway merge junctions’, Transp. Res. Rec., J. Transp. Res. Board, 1995.
    6. 6)
      • 6. Brilon, W., Geistefeldt, J., Regler, M.: ‘Reliability of freeway traffic flow: a stochastic concept of capacity’. 16th Int. Symp. on Transportation and Traffic Theory, Elsevier, 2005.
    7. 7)
      • 7. Hall, F.L., Agyemang-Duah, K.: ‘Freeway capacity drop and the definition of capacity’, Transp. Res. Rec., J. Transp. Res. Board, 1991.
    8. 8)
      • 8. Zhang, L., Levison, D., ‘Some properties of flows at freeway bottlenecks’, Transp. Res. Rec., J. Transp. Res. Board, 2004.
    9. 9)
      • 9. Chen, C., Skabardonis, A., Varaiya, P.: ‘Systematic identification of freeway bottlenecks’, Transp. Res. Rec., J. Transp. Res. Board, 2004, 1867, pp. 4652.
    10. 10)
      • 10. Wieczorek, J., Fernández-Moctezuma, R.J., Bertini, R.L.: ‘Techniques for validating an automatic bottleneck detection tool using archived freeway sensor data’, Transp. Res. Rec., J. Transp. Res. Board, 2010, 2160, pp. 8795.
    11. 11)
      • 11. Yildirimoglu, M., Geroliminis, N.: ‘Travel time estimation and prediction in freeway systems’. 12th Swiss Transport Research Conf., 2012.
    12. 12)
      • 12. Liu, K., Fei, X.: ‘A fuzzy-logic-based system for freeway bottleneck severity diagnosis in a sensor network’, Transp. Res. C, Emerg. Technol., 2010, 18, pp. 554567.
    13. 13)
      • 13. ‘Florida, Bottlenecks on Florida SIS’, 2011.
    14. 14)
      • 14. www.ritis.org, accessed date accessed 2016 accessed.
    15. 15)
      • 15. Hale, D.K., Hajbabaie, A., Ma, J., et al: ‘Congestion and bottlenecks: identification software tool’ (2015).
    16. 16)
      • 16. Kerner, B.S.: ‘Breakdown in traffic networks: fundamentals of transportation science’ (Springer, 2017).
    17. 17)
      • 17. Hallenbeck, M.E., Ishimaru, J., Nee, J.: Measurement of recurring versus non-recurring congestion: technical report’ (Washington State Transportation Center (TRAC), 2003).
    18. 18)
      • 18. Skabardonis, A., Varaiya, P.P., , Petty, K.: ‘Measuring recurrent and nonrecurrent traffic congestion’, Transp. Res. Rec., J. Transp. Res. Board, 2003, 1856, pp. 118124.
    19. 19)
      • 19. Dowling, R., Skabardonis, A., Carroll, M., et al: ‘Methodology for measuring recurrent and nonrecurrent traffic congestion’, Transp. Res. Rec., J. Transp. Res. Board, 2004, 1867, pp. 6068.
    20. 20)
      • 20. Chung, Y.: ‘Identifying primary and secondary crashes from spatiotemporal crash impact analysis’, Transp. Res. Rec., J. Transp. Res. Board, 2013, 2386, pp. 6271.
    21. 21)
      • 21. Medina, C.: ‘Assessment of non-recurrent congestion on Dutch motorways’, MSc, Delft University of Technology, 2010.
    22. 22)
      • 22. Chung, Y.: ‘Quantification of nonrecurrent congestion delay caused by freeway accidents and analysis of causal factors’, Transp. Res. Rec., J. Transp. Res. Board, 2011, 2229, pp. 818.
    23. 23)
      • 23. Moses, R., Mtoi, , E.: ‘Evaluation of free flow speeds on interrupted flow facilities’ (FAMU-FSU College of Engineering, 2013).
    24. 24)
      • 24. TRB: ‘Highway capacity manual’ (Transportation Research Board, 2010).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0284
Loading

Related content

content/journals/10.1049/iet-its.2017.0284
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address