Adaptive non-linear trajectory tracking control for lane change of autonomous four-wheel independently drive electric vehicles

Adaptive non-linear trajectory tracking control for lane change of autonomous four-wheel independently drive electric vehicles

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Since autonomous four-wheel independently drive electric vehicles have the characteristics of parameter uncertainties, non-linearities and redundant actuators, trajectory tracking control for lane change of autonomous electric vehicles is regarded as a challenging task. A novel non-linear trajectory tracking control strategy is designed for lane changing manoeuvre. First, a dynamic trajectory planning strategy is proposed to update the desired trajectory according to the real-time information acquired through vehicle-to-vehicle communications. Second, a robust adaptive non-linear fuzzy backstepping controller is presented to produce the generalised forces/moment of autonomous electric vehicles, and the stability of this proposed adaptive controller is proven by the Lyapunov theory. Then, the quadratic optimisation goal function of tire energy dissipated power is constructed, and the optimal control allocation method is proposed to produce the desired longitudinal and lateral tire forces of autonomous electric vehicles. Finally, simulation results manifest that the proposed adaptive control strategy has the distinguished tracking performance.


    1. 1)
      • 1. Funke, J., Gerdes, J.: ‘Simple clothoid paths for autonomous vehicle lane changes at the limits of handling’. Proc. ASME Dynamic System Control Conf., California, USA, October 2013, pp. 110.
    2. 2)
      • 2. Ren, D., Zhang, J., Zhang, J., et al: ‘Trajectory planning and yaw rate tracking control for lane changing of intelligent vehicle on curved road’, Sci. China Technol. Sci., 2011, 54, (3), pp. 630642.
    3. 3)
      • 3. Guo, L., Ge, P., Yue, M., et al: ‘Lane changing trajectory planning and tracking controller design for intelligent vehicle running on curved road’, Math. Probl. Eng., 2014, 8, (8), pp. 19.
    4. 4)
      • 4. Erkan, K., Herman, R., Wouter, S.: ‘Robust trajectory tracking error model-based predictive control for unmanned ground vehicles’, IEEE/ASME Trans. Mech., 2016, 21, (2), pp. 806814.
    5. 5)
      • 5. Marino, R., Scalzi, S., Netto, M.: ‘Nest PID steering control for lane keeping in autonomous vehicles’, Control Eng. Pract., 2011, 19, (12), pp. 14591467.
    6. 6)
      • 6. Erdal, K., Erkan, K., Herman, R.: ‘Towards Agrobots: trajectory control of an autonomous tractor using type-2 fuzzy logic controllers’, IEEE/ASME Trans. Mech., 2015, 20, (1), pp. 29122924.
    7. 7)
      • 7. Guo, J., Hu, P., Li, L., et al: ‘Design of automatic steering controller for trajectory tracking of unmanned vehicles using genetic algorithms’, IEEE trans.Veh. Technol., 2012, 61, (7), pp. 29132924.
    8. 8)
      • 8. Kammel, S., Ziegier, J., Pitzer, B.: ‘Team Annie way's autonomous system for the 2007 DARPA urban challenge’, J. Field Robot., 2007, 25, (9), pp. 615639.
    9. 9)
      • 9. Tan, H.S., Bu, F., Bougler, B.: ‘A real-world application of lane-guidance technologies automated snowblower’, IEEE Trans. Intell. Transport. Syst., 2007, 8, (3), pp. 538548.
    10. 10)
      • 10. Falcone, P., Borrelli, F., Asgari, J.: ‘Predictive active steering control for autonomous vehicle systems’, IEEE Trans. Control Syst. Technol., 2007, 15, (3), pp. 566580.
    11. 11)
      • 11. Huang, J., Tomizuka, M.: ‘LTV controller design for vehicle lateral control under fault in rear sensors’, IEEE/ASME Trans. Mech., 2005, 10, (1), pp. 17.
    12. 12)
      • 12. Perez, J., Milanes, V., Onieva, E.: ‘Cascade architecture for lateral control in autonomous vehicles’, IEEE Trans. Intell. Transport. Syst., 2011, 12, (1), pp. 7382.
    13. 13)
      • 13. Enache, N., Mammar, S., Netto, M.: ‘Driver steering assistance for lane-departure avoidance based on hybrid automata and composite lyapunov function’, IEEE Trans. Intell. Transport. Syst., 2010, 11, (1), pp. 2839.
    14. 14)
      • 14. Leopoldo, A., Vicent, G., Antonio, S.: ‘Duality-based nonlinear quadratic control: application to mobile robot trajectory following’, IEEE Trans. Control Syst. Technol., 2015, 23, (4), pp. 14941503.
    15. 15)
      • 15. Jie, J., Amir, K., Wael, W.M., et al: ‘Path planning and tracking for vehicle collision avoidance based on model predictive control with multiconstraints’, IEEE Trans. Veh.Technol., 2017, 66, (2), pp. 952964.
    16. 16)
      • 16. Hu, C., Wang, R., Yan, F., et al: ‘Robust path-following control for a fully actuated marine surface vessel with composite nonlinear feedback’, Trans. Institute Meas. Control, 2017,
    17. 17)
      • 17. Aguiar, A., Hespanha, J.: ‘Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty’, IEEE Trans. Automat. Control, 2007, 52, (8), pp. 13621379.
    18. 18)
      • 18. Sun, C., Moura, S., Hu, X., et al: ‘Dynamic traffic feedback data enabled energy management in plug-in hybrid electric vehicles’, IEEE Trans. Control Syst. Technol., 2015, 23, (3), pp. 10751086.
    19. 19)
      • 19. Guo, J., Li, K., Luo, Y.: Coordinated control of autonomous four drive electric wheels for platooning and trajectory tracking using a hierarchical architecture’, ASME J. Dyna. Syst., Meas., Control, 2015, 137, (10), pp. 118.
    20. 20)
      • 20. Ricardo, D., Mara, T., Rui, E.: ‘Design of safety-oriented control allocation strategies for over-actuated electric vehicles’, Veh. Syst. Dyna., 2014, 52, (8), pp. 10171046.
    21. 21)
      • 21. Yan, C., Junmin, W.: ‘Fast and global optimal energy-efficient control allocation with applications to over-actuated electric ground vehicles’, IEEE Trans. Control Syst. Technol., 2012, 20, (5), pp. 12021211.
    22. 22)
      • 22. Rajamani, R.: ‘Vehicle dynamics and control’ (Springer, New York, 2012, 2nd edn.).
    23. 23)
      • 23. Dugoff, H., Francher, P., Segel, L.: ‘An analysis of tire traction properties and their influence on vehicle dynamic performance’, SAE Technical Paper, 1970, 3, (3), pp. 12191243.
    24. 24)
      • 24. Ho, H., Wang, Y., Rad, A.: ‘Robust fuzzy tracking control for robotic manipulators’, Simul. Model Pract. Theory, 2007, 15, (7), pp. 801816.
    25. 25)
      • 25. Tong, W., Yifu, Z., Jianbin, Q.: ‘Adaptive fuzzy backstepping control for a class of nonlinear system with sampled and delayed measurements’, IEEE Trans. Fuzzy Syst., 2015, 23, (2), pp. 302312.
    26. 26)
      • 26. Kyoung, K., Doan, N., Maolin, J.: ‘Adaptive backstepping control of an electrohydraulic actuator’, IEEE/ASME Trans. Mech., 2014, 19, (3), pp. 987995.
    27. 27)
      • 27. Qing, H., Bo, L., Aihua, Z.: Robust finite-time control allocation in spacecraft attitude stabilization under actuator misalignment’, Nonlinear Dyna., 2005, 73, (1), pp. 5371.
    28. 28)
      • 28. Ola, H., Glad, S.: ‘Resolving actuator redundancy-optimal control vs control allocation’, Automatica, 2009, 41, (1), pp. 137144.
    29. 29)
      • 29. Ferrara, A., Vecchio, C.: ‘Second order sliding mode control of vehicles with distributed collision avoidance capabilities’, Mechatronics, 2009, 19, (4), pp. 471477.

Related content

This is a required field
Please enter a valid email address