http://iet.metastore.ingenta.com
1887

Adaptive non-linear trajectory tracking control for lane change of autonomous four-wheel independently drive electric vehicles

Adaptive non-linear trajectory tracking control for lane change of autonomous four-wheel independently drive electric vehicles

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Since autonomous four-wheel independently drive electric vehicles have the characteristics of parameter uncertainties, non-linearities and redundant actuators, trajectory tracking control for lane change of autonomous electric vehicles is regarded as a challenging task. A novel non-linear trajectory tracking control strategy is designed for lane changing manoeuvre. First, a dynamic trajectory planning strategy is proposed to update the desired trajectory according to the real-time information acquired through vehicle-to-vehicle communications. Second, a robust adaptive non-linear fuzzy backstepping controller is presented to produce the generalised forces/moment of autonomous electric vehicles, and the stability of this proposed adaptive controller is proven by the Lyapunov theory. Then, the quadratic optimisation goal function of tire energy dissipated power is constructed, and the optimal control allocation method is proposed to produce the desired longitudinal and lateral tire forces of autonomous electric vehicles. Finally, simulation results manifest that the proposed adaptive control strategy has the distinguished tracking performance.

References

    1. 1)
      • J. Funke , J. Gerdes .
        1. Funke, J., Gerdes, J.: ‘Simple clothoid paths for autonomous vehicle lane changes at the limits of handling’. Proc. ASME Dynamic System Control Conf., California, USA, October 2013, pp. 110.
        . Proc. ASME Dynamic System Control Conf. , 1 - 10
    2. 2)
      • D. Ren , J. Zhang , J. Zhang .
        2. Ren, D., Zhang, J., Zhang, J., et al: ‘Trajectory planning and yaw rate tracking control for lane changing of intelligent vehicle on curved road’, Sci. China Technol. Sci., 2011, 54, (3), pp. 630642.
        . Sci. China Technol. Sci. , 3 , 630 - 642
    3. 3)
      • L. Guo , P. Ge , M. Yue .
        3. Guo, L., Ge, P., Yue, M., et al: ‘Lane changing trajectory planning and tracking controller design for intelligent vehicle running on curved road’, Math. Probl. Eng., 2014, 8, (8), pp. 19.
        . Math. Probl. Eng. , 8 , 1 - 9
    4. 4)
      • K. Erkan , R. Herman , S. Wouter .
        4. Erkan, K., Herman, R., Wouter, S.: ‘Robust trajectory tracking error model-based predictive control for unmanned ground vehicles’, IEEE/ASME Trans. Mech., 2016, 21, (2), pp. 806814.
        . IEEE/ASME Trans. Mech. , 2 , 806 - 814
    5. 5)
      • R. Marino , S. Scalzi , M. Netto .
        5. Marino, R., Scalzi, S., Netto, M.: ‘Nest PID steering control for lane keeping in autonomous vehicles’, Control Eng. Pract., 2011, 19, (12), pp. 14591467.
        . Control Eng. Pract. , 12 , 1459 - 1467
    6. 6)
      • K. Erdal , K. Erkan , R. Herman .
        6. Erdal, K., Erkan, K., Herman, R.: ‘Towards Agrobots: trajectory control of an autonomous tractor using type-2 fuzzy logic controllers’, IEEE/ASME Trans. Mech., 2015, 20, (1), pp. 29122924.
        . IEEE/ASME Trans. Mech. , 1 , 2912 - 2924
    7. 7)
      • J. Guo , P. Hu , L. Li .
        7. Guo, J., Hu, P., Li, L., et al: ‘Design of automatic steering controller for trajectory tracking of unmanned vehicles using genetic algorithms’, IEEE trans.Veh. Technol., 2012, 61, (7), pp. 29132924.
        . IEEE trans.Veh. Technol. , 7 , 2913 - 2924
    8. 8)
      • S. Kammel , J. Ziegier , B. Pitzer .
        8. Kammel, S., Ziegier, J., Pitzer, B.: ‘Team Annie way's autonomous system for the 2007 DARPA urban challenge’, J. Field Robot., 2007, 25, (9), pp. 615639.
        . J. Field Robot. , 9 , 615 - 639
    9. 9)
      • H.S. Tan , F. Bu , B. Bougler .
        9. Tan, H.S., Bu, F., Bougler, B.: ‘A real-world application of lane-guidance technologies automated snowblower’, IEEE Trans. Intell. Transport. Syst., 2007, 8, (3), pp. 538548.
        . IEEE Trans. Intell. Transport. Syst. , 3 , 538 - 548
    10. 10)
      • P. Falcone , F. Borrelli , J. Asgari .
        10. Falcone, P., Borrelli, F., Asgari, J.: ‘Predictive active steering control for autonomous vehicle systems’, IEEE Trans. Control Syst. Technol., 2007, 15, (3), pp. 566580.
        . IEEE Trans. Control Syst. Technol. , 3 , 566 - 580
    11. 11)
      • J. Huang , M. Tomizuka .
        11. Huang, J., Tomizuka, M.: ‘LTV controller design for vehicle lateral control under fault in rear sensors’, IEEE/ASME Trans. Mech., 2005, 10, (1), pp. 17.
        . IEEE/ASME Trans. Mech. , 1 , 1 - 7
    12. 12)
      • J. Perez , V. Milanes , E. Onieva .
        12. Perez, J., Milanes, V., Onieva, E.: ‘Cascade architecture for lateral control in autonomous vehicles’, IEEE Trans. Intell. Transport. Syst., 2011, 12, (1), pp. 7382.
        . IEEE Trans. Intell. Transport. Syst. , 1 , 73 - 82
    13. 13)
      • N. Enache , S. Mammar , M. Netto .
        13. Enache, N., Mammar, S., Netto, M.: ‘Driver steering assistance for lane-departure avoidance based on hybrid automata and composite lyapunov function’, IEEE Trans. Intell. Transport. Syst., 2010, 11, (1), pp. 2839.
        . IEEE Trans. Intell. Transport. Syst. , 1 , 28 - 39
    14. 14)
      • A. Leopoldo , G. Vicent , S. Antonio .
        14. Leopoldo, A., Vicent, G., Antonio, S.: ‘Duality-based nonlinear quadratic control: application to mobile robot trajectory following’, IEEE Trans. Control Syst. Technol., 2015, 23, (4), pp. 14941503.
        . IEEE Trans. Control Syst. Technol. , 4 , 1494 - 1503
    15. 15)
      • J. Jie , K. Amir , W.M. Wael .
        15. Jie, J., Amir, K., Wael, W.M., et al: ‘Path planning and tracking for vehicle collision avoidance based on model predictive control with multiconstraints’, IEEE Trans. Veh.Technol., 2017, 66, (2), pp. 952964.
        . IEEE Trans. Veh.Technol. , 2 , 952 - 964
    16. 16)
      • C. Hu , R. Wang , F. Yan .
        16. Hu, C., Wang, R., Yan, F., et al: ‘Robust path-following control for a fully actuated marine surface vessel with composite nonlinear feedback’, Trans. Institute Meas. Control, 2017, doi.org/10.1177/0142331217727049.
        . Trans. Institute Meas. Control
    17. 17)
      • A. Aguiar , J. Hespanha .
        17. Aguiar, A., Hespanha, J.: ‘Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty’, IEEE Trans. Automat. Control, 2007, 52, (8), pp. 13621379.
        . IEEE Trans. Automat. Control , 8 , 1362 - 1379
    18. 18)
      • C. Sun , S. Moura , X. Hu .
        18. Sun, C., Moura, S., Hu, X., et al: ‘Dynamic traffic feedback data enabled energy management in plug-in hybrid electric vehicles’, IEEE Trans. Control Syst. Technol., 2015, 23, (3), pp. 10751086.
        . IEEE Trans. Control Syst. Technol. , 3 , 1075 - 1086
    19. 19)
      • J. Guo , K. Li , Y. Luo .
        19. Guo, J., Li, K., Luo, Y.: Coordinated control of autonomous four drive electric wheels for platooning and trajectory tracking using a hierarchical architecture’, ASME J. Dyna. Syst., Meas., Control, 2015, 137, (10), pp. 118.
        . ASME J. Dyna. Syst., Meas., Control , 10 , 1 - 18
    20. 20)
      • D. Ricardo , T. Mara , E. Rui .
        20. Ricardo, D., Mara, T., Rui, E.: ‘Design of safety-oriented control allocation strategies for over-actuated electric vehicles’, Veh. Syst. Dyna., 2014, 52, (8), pp. 10171046.
        . Veh. Syst. Dyna. , 8 , 1017 - 1046
    21. 21)
      • C. Yan , W. Junmin .
        21. Yan, C., Junmin, W.: ‘Fast and global optimal energy-efficient control allocation with applications to over-actuated electric ground vehicles’, IEEE Trans. Control Syst. Technol., 2012, 20, (5), pp. 12021211.
        . IEEE Trans. Control Syst. Technol. , 5 , 1202 - 1211
    22. 22)
      • R. Rajamani . (2012)
        22. Rajamani, R.: ‘Vehicle dynamics and control’ (Springer, New York, 2012, 2nd edn.).
        .
    23. 23)
      • H. Dugoff , P. Francher , L. Segel .
        23. Dugoff, H., Francher, P., Segel, L.: ‘An analysis of tire traction properties and their influence on vehicle dynamic performance’, SAE Technical Paper, 1970, 3, (3), pp. 12191243.
        . SAE Technical Paper , 3 , 1219 - 1243
    24. 24)
      • H. Ho , Y. Wang , A. Rad .
        24. Ho, H., Wang, Y., Rad, A.: ‘Robust fuzzy tracking control for robotic manipulators’, Simul. Model Pract. Theory, 2007, 15, (7), pp. 801816.
        . Simul. Model Pract. Theory , 7 , 801 - 816
    25. 25)
      • W. Tong , Z. Yifu , Q. Jianbin .
        25. Tong, W., Yifu, Z., Jianbin, Q.: ‘Adaptive fuzzy backstepping control for a class of nonlinear system with sampled and delayed measurements’, IEEE Trans. Fuzzy Syst., 2015, 23, (2), pp. 302312.
        . IEEE Trans. Fuzzy Syst. , 2 , 302 - 312
    26. 26)
      • K. Kyoung , N. Doan , J. Maolin .
        26. Kyoung, K., Doan, N., Maolin, J.: ‘Adaptive backstepping control of an electrohydraulic actuator’, IEEE/ASME Trans. Mech., 2014, 19, (3), pp. 987995.
        . IEEE/ASME Trans. Mech. , 3 , 987 - 995
    27. 27)
      • H. Qing , L. Bo , Z. Aihua .
        27. Qing, H., Bo, L., Aihua, Z.: Robust finite-time control allocation in spacecraft attitude stabilization under actuator misalignment’, Nonlinear Dyna., 2005, 73, (1), pp. 5371.
        . Nonlinear Dyna. , 1 , 53 - 71
    28. 28)
      • H. Ola , S. Glad .
        28. Ola, H., Glad, S.: ‘Resolving actuator redundancy-optimal control vs control allocation’, Automatica, 2009, 41, (1), pp. 137144.
        . Automatica , 1 , 137 - 144
    29. 29)
      • A. Ferrara , C. Vecchio .
        29. Ferrara, A., Vecchio, C.: ‘Second order sliding mode control of vehicles with distributed collision avoidance capabilities’, Mechatronics, 2009, 19, (4), pp. 471477.
        . Mechatronics , 4 , 471 - 477
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0278
Loading

Related content

content/journals/10.1049/iet-its.2017.0278
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address