Wavelet-based short-term forecasting with improved threshold recognition for urban expressway traffic conditions

Wavelet-based short-term forecasting with improved threshold recognition for urban expressway traffic conditions

For access to this article, please select a purchase option:

Buy eFirst article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Accurate traffic flow prediction can provide reliable and precise information for traffic departments to formulate effective management measures and assist drivers in performing more intelligent route planning and rerouting. The authors propose a short-term traffic flow forecasting framework for urban expressways based on data-driven mixed models including an approach to traffic flow threshold identification based on an improved semi-supervised K-means clustering algorithm, a hybrid multi-scale traffic speed forecasting method based on wavelet decomposition, and a traffic condition index corresponding to three-phase traffic flow theory for reflecting traffic status in real time. Model performance evaluation is performed using multi-source travel speed data. The results show that the traffic threshold recognition algorithm can correctly identify traffic speed thresholds confirming to the three-phase traffic flow transition and that the proposed short-term estimation technique outperforms traditional auto-regressive integrated moving average models, extended Kalman filtering methods, and artificial neural network models in terms of both accuracy and robustness. The proposed traffic condition index using adaptive thresholds and predicted speeds can provide real-time quantitative surveillance for urban expressway traffic.

Related content

This is a required field
Please enter a valid email address