Simulating the effect of cognitive load on braking responses in lead vehicle braking scenarios

Simulating the effect of cognitive load on braking responses in lead vehicle braking scenarios

For access to this article, please select a purchase option:

Buy eFirst article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The recently proposed cognitive control hypothesis suggests that the performance of cognitively loading but non-visual tasks such as cell phone conversation selectively impairs driving tasks that rely on top-down cognitive control while leaving automatised driving tasks unaffected. This idea is strongly supported by the existing experimental literature and the authors have previously outlined a conceptual model to account for the key underlying mechanisms. The present paper presents a mechanistically explicit account of the cognitive control hypothesis in terms of a computational simulation model. More specifically, it is shown how this model offers a straightforward explanation for why the effect of cognitive load on brake response time reported in the experimental lead vehicle (LV) braking studies depends strongly on scenario kinematics, more specifically the initial time headway. It is demonstrated that this relatively simple model can be fitted to empirical data obtained from an existing meta-analysis on existing LV braking studies.

Related content

This is a required field
Please enter a valid email address