http://iet.metastore.ingenta.com
1887

traffic flow prediction model based on deep belief network and genetic algorithm

traffic flow prediction model based on deep belief network and genetic algorithm

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Traffic flow prediction plays an indispensable role in the intelligent transportation system. The effectiveness of traffic control and management relies heavily on the prediction accuracy. The authors propose a model based on deep belief networks (DBNs) to predict the traffic flow. Moreover, they use Fletcher–Reeves conjugate gradient algorithm to optimise the fine-tuning of model's parameters. Since the traffic flow has various features at different times such as weekday, weekend, daytime and night-time, the hyper-parameters of the model should adapt to the time. Therefore, they employ the genetic algorithm to find the optimal hyper-parameters of DBN models for different times. The dataset from Caltrans Performance Measurement System was used to evaluate the performance of their models. The experimental results demonstrate that the proposed model achieved better performance in different times.

References

    1. 1)
      • 1. Highway Capacity Manual’ (Transportation Research Board, Washington, DC, USA, 2000).
    2. 2)
      • 2. Thomas, T., Weijermars, W., Berkum, E.V.: ‘Predictions of urban volumes in single time series’. IEEE Trans. Intell. Transp. Syst., 2010, 11, (1), pp. 7180.
    3. 3)
      • 3. Ghosh, B., Basu, B., O'Mahony, M.: ‘Bayesian time-series model for short-term traffic flow forecasting’, J. Transp. Eng., 2007, 133, (3), pp. 180189.
    4. 4)
      • 4. Voort, M.V.D., Dougherty, M., Watson, S.: ‘Combining Kohonen maps with ARIMA time series models to forecast traffic flow’, Transp. Res. C Emerg. Technol., 1996, 4, (5), pp. 307318.
    5. 5)
      • 5. Work, D.B., Tossavainen, O.P., Blandin, S., et al: ‘An ensemble Kalman filtering approach to highway traffic estimation using GPS enabled mobile devices’. IEEE Conf. Decision and Control (CDC 2008). IEEE, 2008, pp. 50625068.
    6. 6)
      • 6. Ahmed, M.S., Cook, A.R.: ‘Analysis of freeway traffic time-series data by using Box–Jenkins techniques’, Transp. Res. Rec., 1979, 722, pp. 19.
    7. 7)
      • 7. Okutani, I., Stephanedes, Y.J.: ‘Dynamic prediction of traffic volume through Kalman filtering theory’, Transp. Res. B, 1984, 18, (1), pp. 111.
    8. 8)
      • 8. Jia, Y., Wu, J., Benakiva, M., et al: ‘Rainfall-integrated traffic speed prediction using deep learning method’, IET Intell. Transp. Syst., 2017, 11, (9), pp. 531536.
    9. 9)
      • 9. Kim, E.Y.: ‘MRF model based real-time traffic flow prediction with support vector regression’, Electron. Lett., 2017, 53, (4), pp. 243245.
    10. 10)
      • 10. Yang, Y., Duan, Z.: ‘A novel prediction method of traffic flow: least squares support vector machines based on spatial relation’. Cota Int. Conf. Transportation Professionals, 2014, pp. 18071818.
    11. 11)
      • 11. Wu, S., Yang, Z., Zhu, X., et al: ‘Improved k-NN for short-term traffic forecasting using temporal and spatial information’, J. Transp. Eng., 2014, 140, (7), p. 04014026.
    12. 12)
      • 12. Park, J., Dai, L., Yi L, M., et al: ‘Real time vehicle speed prediction using a neural network traffic model’. Int. Joint Conf. Neural Networks. IEEE, 2011, pp. 29912996.
    13. 13)
      • 13. Vlahogianni, E.I., Karlaftis, M.G., Golias, J.C.: ‘Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach’, Transp. Res. C Emerg. Technol., 2005, 13, (3), pp. 211234.
    14. 14)
      • 14. Zheng, W., Lee, D.H.: ‘Short-term freeway traffic flow prediction: Bayesian combined neural network approach’, J. Transp. Eng., 2006, 132, (2), pp. 114121.
    15. 15)
      • 15. Kumar, K., Parida, M., Katiyar, V.K.: ‘Short term traffic flow prediction in heterogeneous condition using artificial neural network’, Transport, 2013, 30, (4), pp. 19.
    16. 16)
      • 16. Chen, D.: ‘Research on traffic flow prediction in the big data environment based on the improved RBF neural network’, IEEE Trans. Ind. Inf., 2017, 13, (4), pp. 20002008.
    17. 17)
      • 17. Huang, W., Song, G., Hong, H., et al: ‘Deep architecture for traffic flow prediction: deep belief networks with multitask learning’, IEEE Trans. Intell. Transp. Syst., 2014, 15, (5), pp. 21912201.
    18. 18)
      • 18. Koesdwiady, A., Soua, R., Karray, F.: ‘Improving traffic flow prediction with weather information in connected cars: a deep learning approach’, IEEE Trans. Veh. Technol., 2016, 65, (12), pp. 95089517.
    19. 19)
      • 19. Lv, Y., Duan, Y., Kang, W., et al: ‘Traffic flow prediction with big data: a deep learning approach’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (2), pp. 865873.
    20. 20)
      • 20. Duan, Y., Lv, Y., Wang, F.Y.: ‘Performance evaluation of the deep learning approach for traffic flow prediction at different times’. IEEE Int. Conf. Service Operations and Logistics, and Informatics. IEEE, 2016, pp. 223227.
    21. 21)
      • 21. Tian, Y., Pan, L.: ‘Predicting short-term traffic flow by long short-term memory recurrent neural network’. IEEE Int. Conf. Smart City. IEEE, 2015, pp. 153158.
    22. 22)
      • 22. Zhao, Z., Chen, W., Wu, X., et al: ‘LSTM network: a deep learning approach for short-term traffic forecast’, IET Intell. Transp. Syst., 2017, 11, (2), pp. 6875.
    23. 23)
      • 23. Sun, B., Cheng, W., Goswami, P., et al: ‘Short-term traffic forecasting using self-adjusting k-nearest neighbours’, IET Intell. Transp. Syst., 2018, 12, (1), pp. 4148.
    24. 24)
      • 24. Fletcher, R., Reeves, C.M.: ‘Function minimization by conjugate gradients’, Comput. J., 1964, 7, (2), pp. 149154.
    25. 25)
      • 25. Hinton, G.E., Salakhutdinov, R.R.: ‘Reducing the dimensionality of data with neural networks’, Science, 2006, 313, (5786), p. 504.
    26. 26)
      • 26. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ‘Imagenet classification with deep convolutional neural networks’. Int. Conf. Neural Information Processing Systems, 2012, pp. 10971105.
    27. 27)
      • 27. Hinton, G.E.: ‘Training products of experts by minimizing contrastive divergence’. Neural Comput., 2002, 14, (8), pp. 17711800.
    28. 28)
      • 28. Caltrans, Performance Measurement System (PeMS)’, 2014. Available at http://pems.dot.ca.gov.
    29. 29)
      • 29. Hinton, G.E., Osindero, S., Teh, Y.W..: ‘A fast learning algorithm for deep belief nets’, Neural Comput., 2006, 18, (7), p. 1527.
    30. 30)
      • 30. Goldberg, D.E.: ‘Genetic algorithms in search, optimization, and machine learning’ (Addison-Wesley, New York, 1989, 1st edn).
    31. 31)
      • 31. Le, Q.V., Ngiam, J., Coates, A., et al: ‘On optimization methods for deep learning’. Int. Conf. Machine Learning’, ICML 2011, Bellevue, Washington, USA, June 28–July. DBLP, 2011, pp. 265272.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0199
Loading

Related content

content/journals/10.1049/iet-its.2017.0199
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address