http://iet.metastore.ingenta.com
1887

Multi-level thinking cellular automata using granular computing title

Multi-level thinking cellular automata using granular computing title

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study discusses the use of granular computing for representing multi-thinking cellular automata model. In addition, the learning in cellular automata model is examined from the viewpoint of granular computing. A granular cellular automata system for simulating the changes needed in cases based on assessments of individual and group decision from the viewpoint of soft computing as a new formulation of granular computing and cellular automata is presented here. The architecture of the proposed model and the results of simulation of novel approach are given. Results from the implementation enrich granular computing cellular automata hybrid system and shed a new light on the concept formulation of the model and the learning in it.

References

    1. 1)
      • 1. Wongthanavasu, S., Ponkaew, J.: ‘A cellular automata-based learning method for classification’, Expert Syst. Appl., 2016, 49, pp. 99111.
    2. 2)
      • 2. Zhou, D., Dai, X.: ‘Integrating granular computing and bioinformatics technology for typical process routes elicitation: A process knowledge acquisition approach’, Eng. Appl. Artif. Intell., 2015, 45, pp. 4656.
    3. 3)
      • 3. Hassan, Y.: ‘Multi-layer rough cellular automata for web structure adaptation’, Wulfenia J., 2014, 21, pp. 15.
    4. 4)
      • 4. Ruan, Y., Li, A.: ‘A new small-world network created by cellular automata’, Phys. A, Stat. Mech. Appl., 2016, 456, pp. 106111.
    5. 5)
      • 5. Horng, G.: ‘Using cellular automata for parking recommendations in smart environments’, PLOS one, 2014, 14, pp. 15.
    6. 6)
      • 6. Caprio, D., Stafiej, J., Luciano, G., et al: ‘3D cellular automata simulations of intra and intergranular corrosion’, Corros. Sci., 2016, 112, pp. 438450.
    7. 7)
      • 7. Hassan, Y., Yamaguchi, D., Tazaki, E.: ‘New model based on cellular automata and multiagent techniques’, Cybern. Syst., 2007, 38, pp. 4782.
    8. 8)
      • 8. Lee, J., Peper, F., Leibnitz, K., et al: ‘Characterization of random fluctuation-based computation in cellular automata’, Inf. Sci., 2016, 352, pp. 150166.
    9. 9)
      • 9. Marinack, M.C.Jr., Fred Higgs, C.: ‘Three-dimensional physics-based cellular automata model for granular shear flow’, Powder Technol., 2015, 277, pp. 287302.
    10. 10)
      • 10. Li, J., Mei, C., Xu, W., et al: ‘Concept learning via granular computing: A cognitive viewpoint’, Inf. Sci., 2015, 298, pp. 447467.
    11. 11)
      • 11. Chiaselotti, G., Ciucci, D., Gentile, T.: ‘Simple graphs in granular computing’, Inf. Sci., 2016, 340, pp. 279304.
    12. 12)
      • 12. Komatsuzaki, T., Iwata, Y.: ‘A combined approach for modeling particle behavior in granular impact damper using discrete element method and cellular automata’, Int. J. Mech. Mater. Design, 2017, 13, (3) pp. 407417.
    13. 13)
      • 13. Hassan, Y.: ‘Rough set adaptive in the model based of cellular automata and multi-agents’, J. Emerging Trends Comput. Inf. Sci., 2011, 2, (9), pp. 440446.
    14. 14)
      • 14. Hassan, Y.F., Moustafa, A., Younes, A.: ‘A customizable quantum-dot cellular automata building block for the synthesis of classical and reversible circuits’, Sci. World J., 2015, 2015, p. 9, doi: 10.1155/2015/705056.
    15. 15)
      • 15. Benzhai, H., Lei, L., Ge, Q., et al: ‘Simulation of wastewater treatment by aerobic granules in a sequencing batch reactor based on cellular automata’, Bioprocess Biosyst. Eng., 2014, 37, (10), pp. 20492059.
    16. 16)
      • 16. Hassan, Y., Tazaki, E.: ‘Emergence decision using hybrid rough sets/cellular automata’, Int. J. Syst. Cybern. ‘Kybernetes’, 2006, 35, (6), pp. 797813.
    17. 17)
      • 17. Pamučar, D., Ljubojević, S.: ‘Cost and risk aggregation in multi-objective route planning for hazardous materials transportation – A neuro-fuzzy and artificial bee colony approach’, Expert Syst. Appl., 2016, 16, pp. 115.
    18. 18)
      • 18. Wang, Y., Chen, Y.-Y.: ‘Modeling the effect of microscopic driving behaviors on kerner's time-delayed traffic breakdown at traffic signal using cellular automata’, Phys. A, Stat. Mech. Appl., 2016, 463, pp. 1224.
    19. 19)
      • 19. Botía, J.F., Cárdenas, A.M., Sierra, C.M.: ‘Fuzzy cellular automata and intuitionistic fuzzy sets applied to an optical frequency comb spectral shape’, Eng. Appl. Artif. Intell., 2017, 62, pp. 181194.
    20. 20)
      • 20. Liang, Z., Wakahara, Y.: ‘Real-time urban traffic amount prediction models for dynamic route guidance systems’, EURASIP J. Wirel. Commun. Netw., 2014, 85, pp. 115.
    21. 21)
      • 21. Zapotecatl, J.L., Rosenblueth, D.A., Gershenson, C.: ‘Deliberative self-organizing traffic lights with elementary cellular automata’, Complexity, 2017, 2017, Article ID 7691370, p. 15.
    22. 22)
      • 22. Zamith, M., Leal-Toledo, R.C.P., Clua, E., et al: ‘A new stochastic cellular automata model for traffic flow simulation with drivers’ behavior prediction’, J. Comput. Sci., 2015, 9, pp. 5156.
    23. 23)
      • 23. Jasti, V.K., Fred Higgs, C.: ‘A fast first order model of a rough annular shear cell using cellular automata’, Granular Matter, 2010, 12, (1), pp. 97106.
    24. 24)
      • 24. Ding, J.-X., Huang, H.-J.: ‘A cellular automata model of traffic flow with consideration of the inertial driving behavior’, Int. J. Mod. Phys. C ., 2010, 21, (4), pp. 549557.
    25. 25)
      • 25. Brockfeld, E., Barlovic, R., Schadschneider, A., et al: ‘Optimizing traffic lights in a cellular automaton model for city traffic’, Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys., 2001, 64, (5).
    26. 26)
      • 26. Poli, J.Jr., Monteiro, L.H.A.: ‘Improving vehicle flow with traffic lights’, Adv. Complex Syst., 2005, 8, (1), pp. 5963.
    27. 27)
      • 27. Jiang, R., Wu, Q.: ‘A stopped time dependent randomization cellular automata model for traffic flow controlled by traffic light’, Phys.A, Stat. Mech. Appl., 2006, 364, pp. 493496.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0195
Loading

Related content

content/journals/10.1049/iet-its.2017.0195
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address