http://iet.metastore.ingenta.com
1887

Modelling the driving behaviour at a signalised intersection with the information of remaining green time

Modelling the driving behaviour at a signalised intersection with the information of remaining green time

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Signal lights are essential for maintaining the operational efficiency and safety in urban road networks. Operational efficiency and safety at intersection have been two important topics in transportation science. In this study, the authors propose a car-following model to investigate the impacts of signal light on driving behaviour, fuel consumption and emissions during the whole process that each vehicle runs across the intersection. In particular, the proposed model has explicitly considered the behaviours at an intersection with countdown device that provides instantaneous information to drivers. The proposed model is tested by numerical analysis and the results indicate that the model can enhance the operational efficiency and the traffic safety near the intersection, and also reduce the average fuel consumption of the vehicles. Sensitivity analysis indicates that the vehicles’ initial time headway at the road origin may have major influences on the flow capacity and the total fuel consumption.

References

    1. 1)
      • C. Cai , Y. Wang , G. Geers .
        1. Cai, C., Wang, Y., Geers, G.: ‘Vehicle-to-infrastructure communication-based adaptive traffic signal control’, IET Intell. Transp. Syst., 2013, 7, (3), pp. 351360.
        . IET Intell. Transp. Syst. , 3 , 351 - 360
    2. 2)
      • Z.F. Li , L. Eleteriadou , S. Ranka .
        2. Li, Z.F., Eleteriadou, L., Ranka, S.: ‘Signal control optimization for automated vehicles at isolated signalized intersections’, Transp. Res. C, 2014, 49, pp. 118.
        . Transp. Res. C , 1 - 18
    3. 3)
      • K. Tiaprasert , Y.L. Zhang , X.B. Wang .
        3. Tiaprasert, K., Zhang, Y.L., Wang, X.B., et al: ‘Queue length estimation using connected vehicle technology for adaptive signal control’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (4), pp. 21292140.
        . IEEE Trans. Intell. Transp. Syst. , 4 , 2129 - 2140
    4. 4)
      • S.W. Yu , Z.K. Shi .
        4. Yu, S.W., Shi, Z.K.: ‘Dynamics of connected cruise control systems considering velocity changes with memory feedback’, Measurement, 2015, 64, pp. 3448.
        . Measurement , 34 - 48
    5. 5)
      • I.H. Zohdy , H.A. Rakha .
        5. Zohdy, I.H., Rakha, H.A.: ‘Intersection management via vehicle connectivity: the intersection cooperative adaptive cruise system concept’, J. Intell. Transp. Syst., 2016, 20, (1), pp. 1732.
        . J. Intell. Transp. Syst. , 1 , 17 - 32
    6. 6)
      • G. De Nunzio , C.C. de Wit , P. Moulin .
        6. De Nunzio, G., de Wit, C.C., Moulin, P., et al: ‘Eco-driving in urban traffic networks using traffic signal information’, Int. J. Robust Nonlinear Control, 2016, 26, (6), pp. 13071324.
        . Int. J. Robust Nonlinear Control , 6 , 1307 - 1324
    7. 7)
      • S. Le Vine , X.B. Liu , F.F. Zheng .
        7. Le Vine, S., Liu, X.B., Zheng, F.F., et al: ‘Automated cars: queue discharge at signalized intersections with ‘assured-clear-distance-ahead’ driving strategies’, Transp. Res. C, 2016, 62, pp. 3554.
        . Transp. Res. C , 35 - 54
    8. 8)
      • M.R. Islam , D.S. Hurwitz , K.L. Macuga .
        8. Islam, M.R., Hurwitz, D.S., Macuga, K.L.: ‘Improved driver responses at intersections with red signal countdown timers’, Transp. Res. C, 2016, 63, pp. 207221.
        . Transp. Res. C , 207 - 221
    9. 9)
      • H. Wang , G.H. Zhang , Z.S. Zhang .
        9. Wang, H., Zhang, G.H., Zhang, Z.S., et al: ‘Estimating control delays at signalised intersections using low-resolution transit bus-based global positioning system data’, IET Intell. Transp. Syst., 2016, 10, (2), pp. 7378.
        . IET Intell. Transp. Syst. , 2 , 73 - 78
    10. 10)
      • D.F. Ma , X.Q. Luo , W.J. Li .
        10. Ma, D.F., Luo, X.Q., Li, W.J., et al: ‘Traffic demand estimation for lane groups at signal-controlled intersections using travel times from video-imaging detectors’, IET Intell. Transp. Syst., 2017, 11, (4), pp. 222229.
        . IET Intell. Transp. Syst. , 4 , 222 - 229
    11. 11)
      • S.C. Wong , N.N. Sze , Y.C. Li .
        11. Wong, S.C., Sze, N.N., Li, Y.C.: ‘Contributory factors to traffic crashes at signalized intersections in Hong Kong’, Accident Anal. Prevent., 2007, 39, (6), pp. 11071113.
        . Accident Anal. Prevent. , 6 , 1107 - 1113
    12. 12)
      • F. Bella , M. Silvestri .
        12. Bella, F., Silvestri, M.: ‘Driver's braking behavior approaching pedestrian crossings: a parametric duration model of the speed reduction times’, J. Adv. Transp., 2016, 50, (4), pp. 630646.
        . J. Adv. Transp. , 4 , 630 - 646
    13. 13)
      • J. Zhao , P. Li .
        13. Zhao, J., Li, P.: ‘An extended car-following model with consideration of speed guidance at intersections’, Physica A, 2016, 461, pp. 18.
        . Physica A , 1 - 8
    14. 14)
      • S. Kikuchi , V. Perincherry , P. Chakroborty .
        14. Kikuchi, S., Perincherry, V., Chakroborty, P., et al: ‘Modeling of driver anxiety during signal change intervals’, Transp. Res. Rec., 1993, 1399, pp. 2735.
        . Transp. Res. Rec. , 27 - 35
    15. 15)
      • T. Nagatani , Y. Hino .
        15. Nagatani, T., Hino, Y.: ‘Driving behavior and control in traffic system with two kinds of signals’, Physica A, 2014, 403, pp. 110119.
        . Physica A , 110 - 119
    16. 16)
      • H. Berndt , S. Wender , K. Dietmayer .
        16. Berndt, H., Wender, S., Dietmayer, K.: ‘Driver braking behavior during intersection approaches and implications for warning strategies for driver assistant systems’. IEEE Intelligent Vehicles Symp., Istanbul, Turkey, 2007, pp. 245251.
        . IEEE Intelligent Vehicles Symp. , 245 - 251
    17. 17)
      • T.Q. Tang , H.J. Huang , S.C. Wong .
        17. Tang, T.Q., Huang, H.J., Wong, S.C., et al: ‘A new car-following model with consideration of the traffic interruption probability’, Chin. Phys. B, 2009, 18, (3), pp. 975983.
        . Chin. Phys. B , 3 , 975 - 983
    18. 18)
      • S.W. Yu , Z.K. Shi .
        18. Yu, S.W., Shi, Z.K.: ‘An extended car-following model at signalized intersections’, Physica A, 2014, 407, pp. 152159.
        . Physica A , 152 - 159
    19. 19)
      • S.W. Yu , Z.K. Shi .
        19. Yu, S.W., Shi, Z.K.: ‘Analysis of car-following behaviors considering the green signal countdown device’, Nonlinear Dyn., 2015, 82, pp. 731740.
        . Nonlinear Dyn. , 731 - 740
    20. 20)
      • P.G. Gipps .
        20. Gipps, P.G.: ‘A behavioural car-following model for computer simulation’, Transp. Res. B, 1981, 15, (2), pp. 105111.
        . Transp. Res. B , 2 , 105 - 111
    21. 21)
      • M. Bando , K. Hasebe , A. Nakayama .
        21. Bando, M., Hasebe, K., Nakayama, A., et al: ‘Dynamical model of traffic congestion and numerical simulation’, Phys. Rev. E, 1995, 51, (2), pp. 10351042.
        . Phys. Rev. E , 2 , 1035 - 1042
    22. 22)
      • D. Helbing , B. Tilch .
        22. Helbing, D., Tilch, B.: ‘Generalized force model of traffic dynamics’, Phys. Rev. E, 1998, 58, (1), pp. 133138.
        . Phys. Rev. E , 1 , 133 - 138
    23. 23)
      • R. Jiang , Q.S. Wu , Z.J. Zhu .
        23. Jiang, R., Wu, Q.S., Zhu, Z.J.: ‘Full velocity difference model for a car-following theory’, Phys. Rev. E, 2001, 64, (1), pp. 367373.
        . Phys. Rev. E , 1 , 367 - 373
    24. 24)
      • Z.P. Li , X.B. Gong , Y.C. Liu .
        24. Li, Z.P., Gong, X.B., Liu, Y.C.: ‘An improved car-following model for multiphase vehicular traffic flow and numerical tests’, Commun. Theor. Phys., 2006, 46, (2), pp. 367373.
        . Commun. Theor. Phys. , 2 , 367 - 373
    25. 25)
      • L. Zheng , Z.B. He .
        25. Zheng, L., He, Z.B.: ‘A new car following model from the perspective of visual imaging’, Int. J. Mod. Phys. C, 2015, 26, (8), p. 1550090.
        . Int. J. Mod. Phys. C , 8 , 1550090
    26. 26)
      • S.W. Yu , Z.K. Shi .
        26. Yu, S.W., Shi, Z.K.: ‘An extended car-following model considering vehicular gap fluctuation’, Measurement, 2015, 70, pp. 137147.
        . Measurement , 137 - 147
    27. 27)
      • G.H. Peng , H.D. He , W.Z. Lu .
        27. Peng, G.H., He, H.D., Lu, W.Z.: ‘A new car-following model with the consideration of incorporating timid and aggressive driving behaviors’, Physica A, 2016, 442, pp. 197202.
        . Physica A , 197 - 202
    28. 28)
      • B. Beusen , S. Broekx , T. Denys .
        28. Beusen, B., Broekx, S., Denys, T., et al: ‘Using on-board logging devices to study the longer-term impact of an eco-driving course’, Transp. Res. D, 2009, 14, (7), pp. 514520.
        . Transp. Res. D , 7 , 514 - 520
    29. 29)
      • F. An , H. Barth , J. Norbeck .
        29. An, F., Barth, H., Norbeck, J., et al: ‘Development of comprehensive modal emissions model: operating under hot-stabilized conditions’, Transp. Res. Rec., 1997, 1587, (1), pp. 5262.
        . Transp. Res. Rec. , 1 , 52 - 62
    30. 30)
      • K. Ahn , H. Rakha , A. Trani .
        30. Ahn, K., Rakha, H., Trani, A., et al: ‘Estimating vehicle fuel consumption and emissions based on instantaneous speed and acceleration levels’, J. Transp. Eng., 2002, 128, (2), pp. 182190.
        . J. Transp. Eng. , 2 , 182 - 190
    31. 31)
      • H. Rakha , K. Ahn , A. Trani .
        31. Rakha, H., Ahn, K., Trani, A.: ‘Comparison of MOBILE5a, MOBILE6, VT-MICRO, and CMEM models for estimating hot-stabilized light-duty gasoline vehicle emissions’, Can. J. Civ. Eng., 2003, 30, (6), pp. 10101021.
        . Can. J. Civ. Eng. , 6 , 1010 - 1021
    32. 32)
      • H. Rakha , K. Ahn , A. Trani .
        32. Rakha, H., Ahn, K., Trani, A.: ‘Development of VT-Micro model for estimating hot stabilized light duty vehicle and truck emissions’, Transp. Res. D, 2004, 9, (1), pp. 4974.
        . Transp. Res. D , 1 , 49 - 74
    33. 33)
      • C.M. Silva , T.L. Farias , H.C. Frey .
        33. Silva, C.M., Farias, T.L., Frey, H.C., et al: ‘Evaluation of numerical models for simulation of real-world hot-stabilized fuel consumption and emissions of gasoline light-duty vehicle’, Transp. Res. D, 2006, 11, (5), pp. 377385.
        . Transp. Res. D , 5 , 377 - 385
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0191
Loading

Related content

content/journals/10.1049/iet-its.2017.0191
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address