http://iet.metastore.ingenta.com
1887

Road safety analysis for high-speed vehicle in complex environments based on the viability kernel

Road safety analysis for high-speed vehicle in complex environments based on the viability kernel

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Road safety analysis is important for vehicles that travel at high speeds. This study proposes a novel viability kernel calculation method for road safety analysis. The viability kernel can be represented by a polyhedron, which is suitable for calculation of the algorithm. This facility solves the problem of analysing the permanent admissible areas of the road with constrains and all possible input of the vehicle. First, the concepts of the viability kernel are described and a simplified vehicle model is developed. Second, the viability kernel is applied to analyse road safety for vehicles on a straight road. Third, the analyses are extended to a straight-corner-straight model, which can be used to simulate general road conditions. The proposed method can predict the largest safety area of the road for vehicles travelling at a high constant speed. In the future, the proposed methods can be applied to calculate the radical safe control for high-speed vehicles in complex road circumstances.

References

    1. 1)
      • 1. Li, K.Q., Wang, Y.Q., Gao, F., et al: ‘Vehicle driving safety assistant systems based on ITS technologies’, Auto. Tech., 2006, 26, (S1), pp. 3235(In Chinese).
    2. 2)
      • 2. Navet, N., Song, Y., Simonot, F., et al: ‘Trends in automotive communication systems’, Proc. IEEE, 2005, 93, (6), pp. 12041223.
    3. 3)
      • 3. Kullack, A., Ehrenpfordt, I., Lemmer, K., et al: ‘Reflektas: lane departure prevention system based on behavioural control’, IET Intell. Transp. Syst., 2008, 4, (2), pp. 285293.
    4. 4)
      • 4. Takada, S., Hiraoka, T., Kawakami, H.: ‘Effectiveness of forward obstacles collision warning system based on deceleration for collision avoidance’, IET Intell. Transp. Syst., 2014, 6, (8), pp. 570579.
    5. 5)
      • 5. Nechyba, M.C., Xu, Y.: ‘Stochastic similarity for validating human control strategy models’, IEEE Trans. Robot. Autom., 1998, 14, (3), pp. 437451.
    6. 6)
      • 6. Pentland, A., Liu, A.: ‘Modeling and prediction of human behavior’, Neural Comput., 1999, 11, (1), pp. 229242.
    7. 7)
      • 7. Celik, O., Ertugrul, S.: ‘Predictive human operator model to be utilized as a controller using linear, neuro-fuzzy and fuzzy-ARX modeling technique’, Eng. Appl. Artif. Intell., 2010, 23, (4), pp. 595603.
    8. 8)
      • 8. Wahab, A., Quek, C., Tan, C.K., et al: ‘Driving profile modeling and recognition based on soft computing approach’, IEEE Trans. Neural Netw., 2009, 20, (4), pp. 563582.
    9. 9)
      • 9. Ghaemi, S., Khanmohammadi, S., Tinati, M.: ‘Driver's behavior modeling using fuzzy logic’, Math. Probl. Eng., 2010, 29, pp. 10241032.
    10. 10)
      • 10. Tezuka, S., Soma, H., Tanifuji, K.: ‘A study of driver behavior inference model at time of lane change using Bayesian networks’. IEEE Int. Conf. Industrial Technology, May 2006, pp. 23082313.
    11. 11)
      • 11. Mandalia, H.M., Salvucci, M.D.D.: ‘Using support vector machines for lane-change detection’. Proc. Human Factors and Ergonomics Society, 2005, pp. 19651969.
    12. 12)
      • 12. Wiest, J., Höffken, M., Kreßel, U., et al: ‘Probabilistic trajectory prediction with Gaussian mixture models’. IEEE IV Symp., 2012, pp. 141146.
    13. 13)
      • 13. Vandanjon, P.O., Coiret, A., Lorino, T.: ‘Viability theory and road safety’, Veh. Syst. Dyn., 2013, 51, (4), pp. 602623.
    14. 14)
      • 14. Li, B., Du, H., Li, W.: ‘Trajectory control for autonomous electric vehicles with in-wheel motors based on a dynamics model approach’, IET Intell. Transp. Syst., 2016, 10, (5), pp. 318330.
    15. 15)
      • 15. Carvalho, A., Lefèvre, S., Schildbach, G., et al: ‘Automated driving: the role of forecasts and uncertainty - a control perspective’, Eur. J. Control, 2015, 24, pp. 1432.
    16. 16)
      • 16. Skaf, J., Boyd, S.P.: ‘Design of affine controllers via convex optimization’, IEEE Trans. Autom. Control, 2010, 55, (11), pp. 24672487.
    17. 17)
      • 17. Gao, Y., Gray, A.: ‘A tube-based robust nonlinear predictive control approach to semiautonomous ground vehicles’, Veh. Syst. Dyn., 2014, 52, (6), pp. 802823.
    18. 18)
      • 18. Blackmore, L., Ono, M., Williams, B.C.: ‘Chance-constrained optimal path planning with obstacles’, IEEE Trans. Robot., 2011, 27, (6), pp. 10801094.
    19. 19)
      • 19. Schulman, J., Ho, J., Lee, A., et al: ‘Finding locally optimal, collision-free trajectories with sequential convex optimization’, Robot., Sci. Syst., 2013, 9, pp. 110.
    20. 20)
      • 20. Lin, C.F., Juang, J.C., Li, K.R.: ‘Active collision avoidance system for steering control of autonomous vehicles’, IET Intell. Transp. Syst., 2014, 6, (8), pp. 550557.
    21. 21)
      • 21. Anderson, S.J., Peters, S.C., Pilutti, T.E., et al: ‘Design and development of an optimal-control-based framework for trajectory planning, threat assessment, and semi-autonomous control of passenger vehicles in hazard avoidance scenarios’, Int. J. Veh. Auton. Syst., 2010, 8, (2), pp. 190216.
    22. 22)
      • 22. Mayne, D.Q., Rawlings, J.B., Rao, C.V., et al: ‘Constrained model predictive control: stability and optimality’, Automatica, 2000, 36, (6), pp. 789814.
    23. 23)
      • 23. Scokaert, P.O.M., Mayne, D.Q.: ‘Min-max feedback model predictive control for constrained linear systems’, IEEE Trans. Autom. Control1998, 43, (8), pp. 11361142.
    24. 24)
      • 24. Yu, S.Y., Chen, H., Zhang, P., et al: ‘An LMI optimization approach for enlarging the terminal region of MPC for nonlinear systems’, Acta Autom. Sin., 2009, 34, (6), pp. 798804.
    25. 25)
      • 25. Fontes, F.A.C.C.: ‘A general framework to design stabilizing nonlinear model predictive controllers’, Syst. Control Lett., 2001, 42, (2), pp. 127143.
    26. 26)
      • 26. Dehaan, D., Guay, M.: ‘A real-time framework for model predictive control of continuous time nonlinear systems’, IEEE Trans. Autom. Control, 2007, 52, (11), pp. 20472057.
    27. 27)
      • 27. He, D.F., Ji, H.B.: ‘Constructive model predictive control for constrained nonlinear systems’, Optim. Contr. Appl. Met., 2008, 29, (4), pp. 467481.
    28. 28)
      • 28. Graichen, K.: ‘A fixed-point iteration scheme for real-time model predictive control’, Automatica, 2012, 48, (7), pp. 13001305.
    29. 29)
      • 29. Aubin, J.P.: ‘Viability theory’ (Birkhauser, Boston, 1991, 1st edn.).
    30. 30)
      • 30. Jaulin, L., Bars, F.L.: ‘An interval approach for stability analysis: application to sailboat robotics’, IEEE Trans. Robot., 2013, 29, (1), pp. 282287.
    31. 31)
      • 31. Panagou, D., Kyriakopoulos, K.J.: ‘Viability control for a class of underactuated systems’, Automatica, 2013, 49, (1), pp. 1729.
    32. 32)
      • 32. Chen, Z., Gao, Y.: ‘Determining the viable unbounded polyhedron under linear control systems’, Asian J. Control, 2014, 16, (1), pp. 17.
    33. 33)
      • 33. Primbs, J.A., Nevistic, V., Doyle, J.C.: ‘Nonlinear optimal control: a control lyapunov function and receding horizon perspective’, Asian J. Control, 1999, 1, (1), pp. 1424.
    34. 34)
      • 34. Liu, L., Gao, Y., Wu, Y.P.: ‘High speed obstacle avoidance control of wheeled mobile robots with nonhomonymic constraint based on viability theory’, Control Decis., 2014, 29, (9), pp. 16231627(in Chinese).
    35. 35)
      • 35. Gao, Y.: ‘Viability criteria for differential inclusions’, J. Syst. Sci. Complex., 2011, 24, pp. 825834.
    36. 36)
      • 36. Soudbakhsh, D., Eskandarian, A.: ‘Steering control collision avoidance system and verification through subject study’, IET Intell. Transp. Syst., 2015, 10, (9), pp. 907915.
    37. 37)
      • 37. Gao, Y.: ‘Determining the viability for a affine non-linear control system’, J. Contr. Theory Appl., 2009, 26, (1), pp. 654656(in Chinese).
    38. 38)
      • 38. Gao, Y., Lygeros, J.M.: ‘Quincampoix, on the reachability problem of uncertain hybrid systems’, IEEE Trans. Autom. Control, 2007, 52, (9), pp. 15721586.
    39. 39)
      • 39. Maidens, J.N., Kaynama, S., Mitchell, I.M., et al: ‘Lagrangian methods for approximating the viability kernel in high-dimensional systems’, Automatica, 2013, 49, (1), pp. 20172029.
    40. 40)
      • 40. Guernic C., Le: ‘Reachability analysis of hybrid systems with linear continuous dynamics’, PhD thesis, Université Joseph-Fourier-Grenoble I, 2009.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0168
Loading

Related content

content/journals/10.1049/iet-its.2017.0168
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address