http://iet.metastore.ingenta.com
1887

Metro timetable optimisation for minimising carbon emission and passenger time: a bi-objective integer programming approach

Metro timetable optimisation for minimising carbon emission and passenger time: a bi-objective integer programming approach

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Timetable optimisation in metro systems is typically a multi-objective decision problem involving both social and passengers benefits. Based on the train operation and passenger demand data, this study develops a bi-objective timetable optimisation model to reduce both passenger time and carbon emission of train operation. Firstly, the cooperative scheduling rule of multiple trains within the same electricity supply section is analysed. The tractive energy consumption and utilisation of regenerative braking energy are calculated with a set of kinematical equations. The carbon emission is formulated according to the calculations of energy consumption. Meanwhile, a passenger time calculation function is established by analysing the real-world passenger demand data. Secondly, a bi-objective integer programming model with dwell time control is formulated, and a linearly weighted compromise algorithm and a heuristic algorithm are designed to find the optimal solution. Finally, a numerical example is presented based on the passenger and operation data from the Beijing Metro Yizhuang Line. The results show that the best found timetable can achieve a good performance on both carbon emission and passenger time in comparison with the currently used timetable.

References

    1. 1)
      • 1. Yang, X., Li, X., Gao, Z.Y., et al: ‘A cooperative scheduling model for timetable optimization in subway systems’, IEEE Trans. Intell. Transp. Syst., 2013, 14, (1), pp. 438447.
    2. 2)
      • 2. Li, X., Lo, H.K.: ‘An energy-efficient scheduling and speed control approach for metro rail operations’, Transp. Res. B, Methodol., 2014, 64, (4), pp. 7389.
    3. 3)
      • 3. Gupta, S.D., Tobin, J.K., Pavel, L.: ‘A two-step linear programming model for energy-efficient timetables in metro railway networks’, Transp. Res. B, 2016, 93, pp. 5774.
    4. 4)
      • 4. Ke, B.R., Lin, C.L., Yang, C.C.: ‘Optimisation of train energy-efficient operation for mass rapid transit systems’, IET Intell. Transp. Syst., 2012, 6, (1), pp. 5866.
    5. 5)
      • 5. Yang, X., Chen, A., Li, X., et al: ‘An energy-efficient scheduling approach to improve the utilization of regenerative energy for metro systems’, Transp. Res. C, Emerg. Technol., 2015, 57, pp. 1329.
    6. 6)
      • 6. Yang, X., Chen, A., Ning, B., et al: ‘A stochastic model for the integrated optimization on metro timetable and speed profile with uncertain train mass’, Transp. Res. B, Methodol., 2016, 91, pp. 424445.
    7. 7)
      • 7. Yang, X., Li, X., Ning, B., et al: ‘A survey on energy-efficient train operation for urban rail transit’, IEEE Trans. Intell. Transp. Syst., 2016, 17, (1), pp. 112.
    8. 8)
      • 8. González-Gil, A., Palacin, R., Batty, P.: ‘Sustainable urban rail systems: strategies and technologies for optimal management of regenerative braking energy’, Energy Convers. Manage., 2013, 75, (5), pp. 374388.
    9. 9)
      • 9. Li, S.K., Yang, L.X., Gao, Z.Y., et al: ‘Robust train regulation for metro lines with stochastic passenger arrival flow’, Inf. Sci., 2016, 373, pp. 287307.
    10. 10)
      • 10. Sun, L., Jin, J.G., Lee, D.H., et al: ‘Demand-driven timetable design for metro services’, Transp. Res. C, 2014, 46, pp. 284299.
    11. 11)
      • 11. Hassannayebi, E., Sajedinejad, A., Mardani, S.: ‘Urban rail transit planning using a two-stage simulation-based optimization approach’, Simul. Model. Pract. Theory, 2014, 49, pp. 151166.
    12. 12)
      • 12. Reyes, F., Cipriano, A.: ‘On-line passenger estimation in a metro system using particle filter’, IET Intell. Transp. Syst., 2014, 8, (1), pp. 18.
    13. 13)
      • 13. Celik, E., Aydin, N., Gumus, A.T.: ‘A multiattribute customer satisfaction evaluation approach for rail transit network: a real case study for Istanbul, Turkey’, Transp. Policy, 2014, 36, (36), pp. 283293.
    14. 14)
      • 14. Barrena, E., Canca, D., Coelho, L.C., et al: ‘Single-line rail rapid transit timetabling under dynamic passenger demand’, Transp. Res. B, Methodol., 2014, 70, (C), pp. 134150.
    15. 15)
      • 15. Freyss, M., Giesen, R., Muñoz, J.C.: ‘Continuous approximation for skip-stop operation in rail transit’, Transp. Res. C, Emerg. Technol., 2013, 36, (11), pp. 419433.
    16. 16)
      • 16. Xu, X.M., Li, K.P., Li, X.: ‘A multi-objective subway timetable optimization approach with minimum passenger time and energy consumption’, J. Adv. Transp., 2016, 50, (1), pp. 6995.
    17. 17)
      • 17. Chevrier, R., Pellegrini, P., Rodriguez, J.: ‘Energy saving in railway timetabling: a bi-objective evolutionary approach for computing alternative running times’, Transp. Res. C, Emerg. Technol., 2013, 37, (3), pp. 2041.
    18. 18)
      • 18. Umiliacchi, S., Nicholson, G., Zhao, N., et al: ‘Delay management and energy consumption minimisation on a single-track railway’, IET Intell. Transp. Syst., 2016, 10, (1), pp. 5057.
    19. 19)
      • 19. Fernandez-Rodriguez, A., Fernandez-Cardador, A., Cucala, A.P., et al: ‘Design of robust and energy-efficient ATO speed profiles of metropolitan lines considering train load variations and delays’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (4), pp. 111.
    20. 20)
      • 20. Yang, X., Chen, A., Wu, J., et al: ‘An energy-efficient rescheduling approach under delay perturbations for metro systems’, Transportmetrica B, Transp. Dyn., 2018, published online in advance, doi: 10.1080/21680566.2017.1421109.
    21. 21)
      • 21. Yang, X., Ning, B., Li, X., et al: ‘A two-objective timetable optimization model in subway systems’, IEEE Trans. Intell. Transp. Syst., 2014, 15, (5), pp. 19131921.
    22. 22)
      • 22. Yang, X., Chen, A., Ning, B., et al: ‘Bi-objective programming approach for solving the metro timetable optimization problem with dwell time uncertainty’, Transp. Res. E, Logist. Transp. Rev., 2017, 97, pp. 2237.
    23. 23)
      • 23. Li, X., Wang, D., Li, K.P., et al: ‘A green train scheduling model and fuzzy multi-objective optimization algorithm’, Appl. Math. Model., 2013, 37, (4), pp. 20632073.
    24. 24)
      • 24. Andrade, C.E.S.D., D'Agosto, M.D.A.: ‘Energy use and carbon dioxide emission assessment in the lifecycle of passenger rail systems: the case of the Rio de Janeiro Metro’, J. Clean Prod., 2016, 126, pp. 526536.
    25. 25)
      • 25. Cai, G.Q., Yang, J.W., Zhou, L.M., et al: ‘Reliability analysis of passenger brake system of metro vehicles based on FTA’. Int. Conf. on Modeling, Simulation and Optimization, Beijing, China, December 2009, pp. 323328.
    26. 26)
      • 26. Holland, J.H.: ‘Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control and artificial intelligence’ (University Michigan Press, Ann Arbor, America, 1975).
    27. 27)
      • 27. Sanchez-Medina, J.J., Galan-Moreno, M.J., Rubio-Royo, E.: ‘Traffic signal optimization in ‘La Almozara’ district in saragossa under congestion conditions, using genetic algorithms, traffic microsimulation, and cluster computing’, IEEE Trans. Intell. Transp. Syst., 2010, 11, (1), pp. 132141.
    28. 28)
      • 28. Nasri, A., Moghadam, M.F., Mokhtari, H.: ‘Timetable optimization for maximum usage of regenerative energy of braking in electrical railway systems’. IEEE Int. Symp. on Power Electronics Electrical Drives Automation and Motion, Pisa, Italy, 2010, pp. 12181221.
    29. 29)
      • 29. Mesbah, M., Sarvi, M., Currie, G.: ‘Optimization of transit priority in the transportation network using a genetic algorithm’, IEEE Trans. Intell. Transp. Syst., 2011, 12, (3), pp. 908919.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0156
Loading

Related content

content/journals/10.1049/iet-its.2017.0156
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address