http://iet.metastore.ingenta.com
1887

Multiple operating mode ANFIS modelling for speed control of HSEMU

Multiple operating mode ANFIS modelling for speed control of HSEMU

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

High-speed electric multiple unit (HSEMU) is a complex non-linear system which runs under three typical operating modes (OMs) including traction, braking, and coasting. With the increasing traffic density of the high-speed railway, the conventionally manual control strategies may be inapplicable for the HSEMU to maintain a good running performance. To enhance the running performances, in this study, a novel multiple OM (MOM) running model is designed to accurately describe the non-linear relationship between running speed and controlling force. By utilising the advantages of adaptive neuro-fuzzy inference system (ANFIS) on non-linear modelling, this study proposes an MOM-ANFIS model of HSEMU. On the basis of the established MOM-ANFIS model, a new speed controller incorporated with OM selection mechanism is designed to achieve speed control of HSEMU followed by a stability analysis of the closed-loop system. Comparative experimental results using practical running data show that the proposed MOM-ANFIS model displays better modelling accuracy and the corresponding control strategy achieves improved speed control performances for the HSEMU.

References

    1. 1)
      • 1. Ning, B., Tang, T., Dong, H.R., et al: ‘An introduction to parallel control and management for high-speed railway systems’, IEEE Trans. Intell. Transp. Syst., 2012, 12, (4), pp. 14731483.
    2. 2)
      • 2. Yang, H., Zhang, K.P., Liu, H.E.: ‘Online regulation of high speed train trajectory control based on T–S fuzzy bilinear model’, IEEE Trans. Intell. Transp. Syst., 2016, 17, (6), pp. 14961508.
    3. 3)
      • 3. Sun, H.Q., Hou, Z.S., Li, D.Y.: ‘Coordinated iterative learning control schemes for train trajectory tracking with overspeed protection’, IEEE Trans. Autom. Sci. Eng., 2013, 10, (2), pp. 323333.
    4. 4)
      • 4. Albrecht, T., Binder, A., Gassel, C.: ‘Applications of real-time speed control in rail-bound public transportation systems’, IET Intell. Transp. Syst., 2013, 7, (3), pp. 305314.
    5. 5)
      • 5. Song, Q., Song, Y.D., Cai, W.C.: ‘Adaptive backstepping control of train systems with traction/braking dynamics and uncertain resistive forces’, Veh. Syst. Dyn., Int. J. Veh. Mech. Mob., 2011, 49, (9), pp. 14411454.
    6. 6)
      • 6. Li, Y.F., Zhang, L., Zheng, H., et al: ‘Non-lane-discipline-based car-following model for electric vehicles in transportation-cyber-physical-systems’, IEEE Trans. Intell. Transp. Syst., 2017, (to appear).
    7. 7)
      • 7. Li, Y.F., Zhang, L., Peeta, S., et al: ‘A car-following model considering the effect of electronic throttle opening angle under connected environment’, Nonlinear Dyn., 2016, 85, (4), pp. 21152125.
    8. 8)
      • 8. Pan, D., Zheng, Y.P.: ‘Study on the mechanism of high-speed train following operation control’, J. China Railw. Soc., 2013, 35, (3), pp. 5361.
    9. 9)
      • 9. Wu, X., Shen, J., Li, Y.G., et al: ‘Data-driven modeling and predictive control for boiler–turbine unit’, IEEE Trans. Energy Convers., 2016, 28, (3), pp. 470481.
    10. 10)
      • 10. Xu, D.Z., Jiang, B., Liu, F.: ‘Improved data driven model free adaptive constrained control for a solid oxide fuel cell’, IET Control Theory Appl., 2016, 10, (12), pp. 14121419.
    11. 11)
      • 11. Yang, H., Zhang, F., Zhang, K.P., et al: ‘Predictive control using a distributed model for electric multiple unit’, Acta Autom. Sin., 2014, 40, (9), pp. 19121921.
    12. 12)
      • 12. Wen, S.H., Yang, J.W., Rad, A.B., et al: ‘Multi-model direct generalised predictive control for automatic train operation system’, IET Intell. Transp. Syst., 2015, 9, (1), pp. 8694.
    13. 13)
      • 13. Ke, B.R., Lin, C.L., Lai, C.W.: ‘Optimization of train-speed trajectory and control for mass rapid transit systems’, Control Eng. Pract., 2011, 19, (7), pp. 675687.
    14. 14)
      • 14. Song, Q., Song, Y.D.: ‘Data-based fault-tolerant control of high-speed trains with traction/braking notch nonlinearities and actuator failures’, IEEE Trans. Neural Netw., 2011, 22, (12), pp. 22502261.
    15. 15)
      • 15. Ahn, C., Li, C.T., Peng, H.: ‘Optimal decentralized charging control algorithm for electrified vehicles connected to smart grid’, J. Power Sources, 2011, 196, (23), pp. 1036910379.
    16. 16)
      • 16. Wang, Y.J., Song, Y.D., Gao, H., et al: ‘Distributed fault-tolerant control of virtually and physically interconnected systems with application to high-speed trains under traction/braking failure’, IEEE Trans. Intell. Transp. Syst., 2016, 17, (2), pp. 535545.
    17. 17)
      • 17. Wu, M., Wang, C., Wang, S., et al: ‘Design and application of generalized predictive control strategy with closed-loop identification for burn-through point in sintering process’, Control Eng. Pract., 2012, 20, pp. 10651074.
    18. 18)
      • 18. Li, Y.F., Yang, B., Zheng, H., et al: ‘Extended-state-observer-based double-loop integral sliding-mode control of electronic throttle valve’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (5), pp. 25012510.
    19. 19)
      • 19. Tseng, C.S., Chen, B.S., Uang, H.J.: ‘Fuzzy tracking control design for nonlinear dynamic systems via T–S fuzzy model’, IEEE Trans. Fuzzy Syst., 2001, 35, (4), pp. 7783.
    20. 20)
      • 20. Chen, S., Billings, S.: ‘Neural networks for nonlinear dynamic system modeling and identification’, Int. J. Control, 1992, 56, (2), pp. 319346.
    21. 21)
      • 21. Jang, J.S.R.: ‘ANFIS: adaptive-network-based fuzzy inference system’, IEEE Trans. Syst. Man Cybern., 1993, 23, (3), pp. 665685.
    22. 22)
      • 22. Yang, H., Fu, Y.T., Zhang, K.P., et al: ‘Speed tracking control using an ANFIS model for high-speed electric multiple unit’, Control Eng. Pract., 2014, 23, pp. 5765.
    23. 23)
      • 23. Chou, M., Xia, X.: ‘Optimal cruise control of heavy-haul trains equipped with electronically controlled pneumatic brake system’, Control Eng. Pract., 2007, 15, (5), pp. 511519.
    24. 24)
      • 24. Chen, M.Y., Hybrid, A.: ‘ANFIS model for business failure prediction utilizing particle swarm optimization and subtractive clustering’, Inf. Sci., 2013, 220, (20), pp. 180195.
    25. 25)
      • 25. Khodayari, A., Ghaffari, A., Kazem, R., et al: ‘Improved adaptive neuro fuzzy inference system car-following behaviour model based on the driver-vehicle delay’, IET Intell. Transp. Syst., 2014, 8, (4), pp. 323332.
    26. 26)
      • 26. Jang, J.S.R., Sun, C.T.: ‘Neuro-fuzzy modeling and control’, Proc. IEEE, 1995, 83, (3), pp. 378406.
    27. 27)
      • 27. Fu, Y.T., Yang, H., Wang, D.H.: ‘Real-time optimal control of tracking running for high-speed electric multiple unit’, Inf. Sci., 2017, 376, (10), pp. 202215.
    28. 28)
      • 28. Clarke, D.W., Scattolini, R.: ‘Constrained receding-horizon predictive control’, IEE Proc. D Control Theory Appl., 1991, 138, (4), pp. 347354.
    29. 29)
      • 29. Narendra, K.S., Balakrishman, J.: ‘Adaptive control using multiple models’, IEEE Trans. Autom. Control, 1997, 42, (2), pp. 171187.
    30. 30)
      • 30. Dong, H.R., Ning, B., Cai, B.G., et al: ‘Automatic train control system development and simulation for high-speed railways’, IEEE Circuits Syst., 2010, 10, (2), pp. 618.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0121
Loading

Related content

content/journals/10.1049/iet-its.2017.0121
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address