access icon free Integrated framework for real-time urban network travel time prediction on sparse probe data

The study presents the methodology and system architecture of an integrated urban road network travel time prediction framework based on low-frequency probe vehicle data. Intended applications include real-time network traffic management, vehicle routing and information provision. The framework integrates methods for receiving a stream of probe vehicle data, map matching and path inference, link travel time estimation, calibration of prediction model parameters and network travel time prediction in real time. The system design satisfies three crucial aspects: computational efficiency of prediction, internal consistency between components and robustness against noisy and missing data. Prediction is based on a multivariate hybrid method of probabilistic principal component analysis, which captures global correlation patterns between links and time intervals, and local smoothing, which considers local correlations among neighbouring links. Computational experiments for the road network of Stockholm, Sweden and probe data from taxis show that the system provides high accuracy for both peak and off-peak traffic conditions. The computational efficiency of the framework makes it capable of real-time prediction for large-scale networks. For links with large speed variations between days, prediction significantly outperforms the historical mean. Furthermore, prediction is reliable also for links with high proportions of missing data.

Inspec keywords: data handling; principal component analysis; vehicle routing; probability; intelligent transportation systems

Other keywords: vehicle routing; multivariate hybrid method; link travel time estimation; real-time network traffic management; prediction model parameter calibration; probe vehicle data; map matching; integrated urban road network travel time prediction; local smoothing; sparse probe data; missing data; noisy data; information provision; Sweden; Stockholm; real-time urban network travel time prediction; probabilistic principal component analysis; path inference; global correlation patterns; time intervals; low-frequency probe vehicle data

Subjects: Traffic engineering computing; Data handling techniques; Other topics in statistics

References

    1. 1)
      • 22. Hart, P., Nilsson, N., Raphael, B.: ‘A formal basis for the heuristic determination of minimum cost paths’, IEEE Trans. Syst. Sci. Cybern., 1968, 4, (2), pp. 100107.
    2. 2)
      • 7. Liu, X., Liu, K., Li, M., et al: ‘A ST-CRF map-matching method for low-frequency floating car data’, IEEE Trans. Intell. Transp. Syst., 2016, 85, pp. 628643, in press.
    3. 3)
      • 18. Ben-Akiva, M., Bierlaire, M., Burton, D., et al: ‘Network state estimation and prediction for real-time traffic management’, Netw. Spat. Econ., 2001, 1, (3-4), pp. 293318.
    4. 4)
      • 13. Sanaullah, I., Quddus, M., Enoch, M.: ‘Developing travel time estimation methods using sparse GPS data’, J. Intell. Transp. Syst., 2016, 20, (6), pp. 532544.
    5. 5)
      • 21. Jenelius, E., Koutsopoulos, H.N.: ‘Urban network travel time prediction based on a probabilistic principal component analysis model of probe data’, IEEE Trans. Intell. Transp. Syst., 2017, doi: 10.1109/TITS.2017.2703652.
    6. 6)
      • 2. Leduc, G.: ‘Road traffic data: collection methods and applications’, 2008, JRC Technical Notes, Working Papers on Energy, Transport and Climate Change, N.1.
    7. 7)
      • 12. Rahmani, M., Jenelius, E., Koutsopoulos, H.N.: ‘Nonparametric estimation of route travel time distributions from low-frequency floating car data’, Transp. Res. C, Emerg. Technol., 2015, 58B, pp. 343362.
    8. 8)
      • 16. van Lint, J.W.C., Hoogendoorn, S.P., van Zuylen, H.J.: ‘Accurate freeway travel time prediction with state-space neural networks under missing data’, Transp. Res. C, Emerg. Technol., 2005, 13, (5), pp. 347369.
    9. 9)
      • 10. Hunter, T., Hofleitner, A., Reilly, J., et al: ‘Arriving on time: estimating travel time distributions on large-scale road networks’, 2013, arXiv preprint arXiv:13026617.
    10. 10)
      • 9. Jenelius, E., Koutsopoulos, H.N.: ‘Travel time estimation for urban road networks using low frequency probe vehicle data’, Transp. Res. B, Methodol., 2013, 53, pp. 6481.
    11. 11)
      • 8. Work, D.B., Tossavainen, O.P., Blandin, S., et al: ‘An ensemble Kalman filtering approach to highway traffic estimation using GPS enabled mobile devices’. 47th IEEE Conf. on Decision and Control, 2008, pp. 50625068.
    12. 12)
      • 1. Antoniou, C., Balakrishnan, R., Koutsopoulos, H.N.: ‘A synthesis of emerging data collection technologies and their impact on traffic management applications’, Eur. Transp. Res. Rev., 2011, 3, pp. 139148.
    13. 13)
      • 25. Porta, J., Verbeek, J., Krose, B.: ‘Active appearance-based robot localization using stereo vision’, Auton. Robots, 2005, 18, (1), pp. 5980.
    14. 14)
      • 24. Edie, L.C.: ‘Discussion of traffic stream measurements and definitions’. Proc. of the 2nd Int. Symp. on the Theory of Traffic Flow, 1963, pp. 139154.
    15. 15)
      • 14. Vlahogianni, E.I., Karlaftis, M.G., Golias, J.C.: ‘Shortterm traffic forecasting: where we are and where we're going’, Transp. Res. C, Emerg. Technol., 2014, 43, pp. 319.
    16. 16)
      • 4. Miwa, T., Kiuchi, D., Yamamoto, T., et al: ‘Development of map matching algorithm for low frequency probe data’, Transp. Res. C, Emerg. Technol., 2012, 22, pp. 132145.
    17. 17)
      • 23. Tipping, M.E., Bishop, C.M.: ‘Probabilistic principal component analysis’, J. R. Stat. Soc. B, Stat. Methodol., 1999, 61, (3), pp. 611622.
    18. 18)
      • 3. Jenelius, E., Koutsopoulos, H.N.: ‘Probe vehicle data sampled by time or space: consistent travel time allocation and estimation’, Transp. Res. B, 2015, 71, pp. 120137.
    19. 19)
      • 19. Hofleitner, A., Herring, R., Abbeel, P., et al: ‘Learning the dynamics of arterial traffic from probe data using a dynamic Bayesian network’, IEEE Trans. Intell. Transp. Syst., 2012, 13, (4), pp. 16791693.
    20. 20)
      • 15. van Lint, J.W.C., van Hinsbergen, C.P.I.J.: ‘Short-term traffic and travel time prediction models’, Artif. Intell. Appl. Crit. Transp. Issues, 2012, 22, pp. 2241.
    21. 21)
      • 11. Zheng, F., van Zuylen, H.: ‘Urban link travel time estimation based on sparse probe vehicle data’, Transp. Res. C, Emerg. Technol., 2013, 31, pp. 145157.
    22. 22)
      • 5. Rahmani, M., Koutsopoulos, H.N.: ‘Path inference from sparse floating car data for urban networks’, Transp. Res. C, Emerg. Technol., 2013, 30, pp. 4154.
    23. 23)
      • 6. Quddus, M., Washington, S.: ‘Shortest path and vehicle trajectory aided map-matching for low frequency GPS data’, Transp. Res. C, Emerg. Technol., 2015, 25, pp. 328339.
    24. 24)
      • 17. Burghout, W., Koutsopoulos, H.N., Andreasson, I.: ‘Incident management and traffic information: tools and methods for simulation-based traffic prediction’, Transp. Res. Rec., J. Transp. Res. Board, 2010, (2161), pp. 2028.
    25. 25)
      • 20. Cai, P., Wang, Y., Lu, G., et al: ‘A spatiotemporal correlative k-nearest neighbor model for short-term traffic multistep forecasting’, Transp. Res. C, Emerg. Technol., 2016, 62, pp. 2134.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0113
Loading

Related content

content/journals/10.1049/iet-its.2017.0113
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading