http://iet.metastore.ingenta.com
1887

access icon openaccess Aerodrome situational awareness of unmanned aircraft: an integrated self-learning approach with Bayesian network semantic segmentation

  • HTML
    98.8017578125Kb
  • PDF
    3.8741559982299805MB
  • XML
    78.505859375Kb
Loading full text...

Full text loading...

/deliver/fulltext/iet-its/12/8/IET-ITS.2017.0101.html;jsessionid=1jn7g4y3ll2kk.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-its.2017.0101&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Hausamann, D., Zirnig, W., Schreier, G., et al: ‘Monitoring of gas pipelines – a civil UAV application’, Aircr. Eng. Aerosp. Technol., 2005, 77, (5), pp. 352360.
    2. 2)
      • 2. Li, Z., Liu, Y., Hayward, R., et al: ‘Knowledge-based power line detection for uav surveillance and inspection systems’. 2008 23rd Int. Conf. Image and Vision Computing, Christchurch, New Zealand, 2008, pp. 16.
    3. 3)
      • 3. Loh, B.Y.R., Roe, T.: ‘UAVs in civil airspace: safety requirements’, IEEE Aerosp. Electron. Syst. Mag., 2009, 24, (1), pp. 517.
    4. 4)
      • 4. Dalamagkidis, V.K.P. K., Piegl, L.A.: ‘Current status and future perspectives for unmanned aircraft system operations in the us’, J. Intell. Robotic Syst., 2008, 52, (2), pp. 313329.
    5. 5)
      • 5. Loegering, G., Harris, S.: ‘Landing dispersion results - global hawk auto-land system’. AIAA's 1st Technical Conf. and Workshop on Unmanned Aerial Vehicles, Portsmouth, VA, USA, 2002.
    6. 6)
      • 6. Lu, B., Li, B., Chen, W.H.: ‘Map-enhanced visual taxiway extraction for autonomous taxiing of uavs’, IFAC-PapersOnLine, 2015, 48, (9), pp. 4954.
    7. 7)
      • 7. Lu, B., Coombes, M., Li, B., et al: ‘Improved situation awareness for autonomous taxiing through selflearning’, IEEE Trans. Intell. Transp. Syst., 2016, 17, pp. 35533564.
    8. 8)
      • 8. Eaton, W., Chen, W.H.: ‘Image segmentation for automated taxiing of unmanned aircraft’. 2015 Int. Conf. on Unmanned Aircraft Systems (ICUAS), Denver, CO, USA, 2015, pp. 18.
    9. 9)
      • 9. Durrie, T.G.E.W.F.J., Pledgie, S.: ‘Vision-aided inertial navigation on an uncertain map using a particle filter’. Proc. of the IEEE Int. Conf. on Robotics and Automation, 2009, pp. 41894194.
    10. 10)
      • 10. Durrie, J., Gerritsen, T., Frew, E.W., et al: ‘Vision aided inertial navigation on an uncertain map using a particle filter’. IEEE Int. Conf. on Robotics and Automation, 2009, ICRA 09, Kobe, Japan, 2009, pp. 41894194.
    11. 11)
      • 11. Sotelo, M.A., Rodriguez, F.J., Magdalena, L., et al: ‘A color vision-based lane tracking system for autonomous driving on unmarked roads’, Auton. Robots, 2004, 16, (1), pp. 95116.
    12. 12)
      • 12. Cheng, H.Y., Jeng, B.S., Tseng, P.T., et al: ‘Lane detection with moving vehicles in the traffic scenes’, IEEE Trans. Intell. Transp. Syst., 2006, 7, (4), pp. 571582.
    13. 13)
      • 13. Satzoda, R.K., Trivedi, M.M.: ‘Drive analysis using vehicle dynamics and vision-based lane semantics’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (1), pp. 918.
    14. 14)
      • 14. Gaikwad, V., Lokhande, S.: ‘Lane departure identification for advanced driver assistance’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (2), pp. 910918.
    15. 15)
      • 15. Zhang, Y., Gong, J., Tian, J.: ‘Robust lane detection and tracking using improved Hough transform and Gaussian mixture model’, in: Zhang, T., Sang, N., (Eds): ‘Seventh international symposium on multispectral image processing and pattern recognition (MIPPR)’, vol. 8003 (International Society for Optics and Photonics, Guilin, China, 2011), pp. 18.
    16. 16)
      • 16. Achanta, R., Hemami, S., Estrada, F., et al: ‘Frequency-tuned salient region detection’. IEEE Conf. on Computer Vision and Pattern Recognition, 2009, CVPR 2009, Miami, FL, USA, 2009, pp. 15971604.
    17. 17)
      • 17. Coombes, M., Eaton, W., Chen, W.H.: ‘Unmanned ground operations using semantic image segmentation through a Bayesian network’. Int. Conf. on Unmanned Aircraft Systems (ICUAS), 2016, pp. 868877.
    18. 18)
      • 18. Wang, H., Wei, Z., Wang, S., et al: ‘A vision-based obstacle detection system for unmanned surface vehicle’. IEEE 5th Int. Conf. on Robotics, Automation and Mechatronics (RAM), Qingdao, China, 2011, pp. 364369.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0101
Loading

Related content

content/journals/10.1049/iet-its.2017.0101
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address