http://iet.metastore.ingenta.com
1887

Automated class identification of modes of travel in shared spaces: a case study from India

Automated class identification of modes of travel in shared spaces: a case study from India

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This paper presents a classification approach for road-user modes of travel. The classification does not assume well organized, and lane disciplined traffic. Instead, it relies on specific characteristics intrinsic for each road-user to predict the corresponding class. The classification relies on extracting the geometric and movement characteristics of road-users. As such, it is possible to classify road-users in shared space facilities and sites with high level of non-compliance. The classification is a multi-step procedure. First, movement features are used to discriminate between motorized and non-motorized road-users. Then, complementary features based on road-user geometry are added to differentiate between vehicles, rickshaws, powered two-wheelers, and buses. Experiments are performed on a video data set from a shared facility in New Delhi, India. A performance analysis demonstrated the robustness of the proposed classification method with a correct classification rate of up to 90 percent. By considering the movement attributes, the approach is tolerant to considerable variations in road-user physical details which often arises from choices of camera positions and partial occlusions. The research is part of the long-term goal to develop an automated video-based road safety and data collection system for developing countries.

References

    1. 1)
      • 1. Pucher, J., Peng, Z.-r., Mittal, N., et al: ‘Urban transport trends and policies in China and India: impacts of rapid economic growth’, Transp. Rev., 2007, 27, (4), pp. 379410.
    2. 2)
      • 2. Kanagaraj, V., Asaithambi, G., Toledo, T., et al: ‘Trajectory data and flow characteristics of mixed traffic’, Transp. Res. Rec., 2015, 2491, pp. 111.
    3. 3)
      • 3. Li, Z., Xiong, H., Coifman, B.: ‘Empirical innovation of computational dual-loop models for identifying vehicle classifications against varied traffic conditions’, Comput.-Aided Civ. Infrastruct. Eng., 2013, 28, (8), pp. 621634.
    4. 4)
      • 4. Rajab, S., Kalaa, M.O.A., Refai, H.: ‘Classification and speed estimation of vehicles via tire detection using single-element piezoelectric sensor’, J. Adv. Transp., 2017, 50, (7), pp. 13661385..
    5. 5)
      • 5. Weinblatt, H., Minge, E., Petersen, S.: ‘Length-based vehicle classification schemes and length bin boundaries’, Transp. Res. Rec., 2013, 2339, pp. 1929.
    6. 6)
      • 6. Brosnan, M., Petesch, M., Pieper, J., et al: ‘Validation of bicycle counts from pneumatic tube counters in mixed traffic flows’, Transp. Res. Rec., 2015, 2527, pp. 8089.
    7. 7)
      • 7. Cho, H., Rybski, P., Zhang, W.: ‘Vision-based bicyclist detection and tracking for intelligent vehicles’. IEEE Intelligent Vehicles Symp., San Diego, CA, USA, 2010, pp. 454461.
    8. 8)
      • 8. Messelodi, S., Modena, C.M., Cattoni, G.: ‘Vision-based bicycle/motorcycle classification’, Pattern Recognit. Lett., 2007, 28, pp. 17191726.
    9. 9)
      • 9. Gupte, S., Masoud, O., Martin, R., et al: ‘Detection and classification of vehicles’, IEEE Trans. Intell. Transp. Syst., 2002, 3, (1), pp. 3747.
    10. 10)
      • 10. Coifman, B., Beymer, D., McLauchlan, P., et al: ‘A real-time computer vision system for vehicle tracking and traffic surveillance’, Transp. Res. C, Emerg. Technol., 1998, 6, (4), pp. 271288.
    11. 11)
      • 11. Hsieh, J.-W., Yu, S.-H., Chen, Y.-S., et al: ‘Automatic traffic surveillance system for vehicle tracking and classification’, IEEE Trans. Intell. Transp. Syst., 2006, 7, (2), pp. 175187.
    12. 12)
      • 12. Sun, Z., Bebis, G., Miller, R.: ‘On-road vehicle detection using optical sensors: a review’. IEEE Int. Conf. on Intelligent Transportation Systems, Washington, DC, USA, 2004, pp. 585590.
    13. 13)
      • 13. Munder, S., Gavrila, D.: ‘An experimental study on pedestrian classification’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, (11), pp. 18631868.
    14. 14)
      • 14. Munder, S., Schnorr, C., Gavrila, D.: ‘Pedestrian detection and tracking using a mixture of view-based shape-texture models’, IEEE Trans. Intell. Transp. Syst., 2008, 9, (2), pp. 333343.
    15. 15)
      • 15. Buch, N., Orwell, J., Velastin, S.: ‘Urban road user detection and classification using 3D wire frame models’, IET Comput. Vis., 2010, 4, (2), pp. 105116.
    16. 16)
      • 16. Khanloo, B., Stefanus, F., Ranjbar, M., et al: ‘A large margin framework for single camera offline tracking with hybrid cues’, Comput. Vis. Image Underst., 2012, 116, (6), pp. 676689.
    17. 17)
      • 17. Yasutomi, S., Mori, H.: ‘A method for discriminating of pedestrian based on rhythm’. Proc. of the IEEE/RSJ/GI Int. Conf. on Intelligent Robots and Systems, Munich, Germany, 1994, 2, pp. 988995.
    18. 18)
      • 18. Ran, Y., Chellappa, R., Zheng, Q.: ‘Finding gait in space and time’. IEEE Int. Conf. on Pattern Recognition, Hong Kong, China, 2006..
    19. 19)
      • 19. Teichman, A., Levinson, J., Thrun, S.: ‘Towards 3D object recognition via classification of arbitrary object tracks’. IEEE Int. Conf. on Robotics and Automation (ICRA), Shanghai, China, 2011, pp. 40344041..
    20. 20)
      • 20. Takahashi, T., Kim, H., Kamijo, S.: ‘Urban road user classification framework using local feature descriptors and HMM’. 2012 15th Int. IEEE Conf. on Intelligent Transportation Systems (ITSC), Anchorage, AK, USA, 2012, pp. 6772..
    21. 21)
      • 21. Curio, C., Edelbrunner, J., Kalinke, T., et al: ‘Walking pedestrian recognition’. IEEE/IEEJ/JSAI Int. Conf. on Intelligent Transportation Systems, 1999, 1, (3), pp. 292297.
    22. 22)
      • 22. Boudet, L., Mideneta, S.: ‘Pedestrian crossing detection based on evidential fusion of video-sensors’, Transp. Res. C, Emerg. Technol., 2009, 17, (5), pp. 484497.
    23. 23)
      • 23. Enzweiler, M., Gavrila, D.: ‘Monocular pedestrian detection: survey and experiments’, IEEE Trans. Pattern Anal. Mach. Intell., 2009, 31, (12), pp. 21792195.
    24. 24)
      • 24. Gandhi, T., Trivedi, M.: ‘Pedestrian protection systems: issues, survey, and challenges’, IEEE Trans. Intell. Transp. Syst., 2007, 8, (3), pp. 413430.
    25. 25)
      • 25. Messelodi, S., Modena, C.M., Zanin, M.: ‘A computer vision system for the detection and classification of vehicles at urban road intersections’, J. Pattern Anal. Appl., 2005, 8, pp. 1731.
    26. 26)
      • 26. Lin, Y.-B., Young, C.-P.: ‘High-precision bicycle detection on single side-view image based on the geometric relationship’, Pattern Recognit., 2017, 63, pp. 334354.
    27. 27)
      • 27. Somasundaram, G., Morellas, V., Papanikolopoulos, N.: ‘Counting pedestrians and bicycles in traffic scenes’. Int. IEEE Conf. on Intelligent Transportation Systems, St. Louis, MO, USA, October 2009, pp. 16..
    28. 28)
      • 28. Zhang, Y., Ling, Q.: ‘Bicycle detection based on multi-feature and multi-frame fusion in low-resolution traffic videos’, arXiv preprint2017, 1706.03309..
    29. 29)
      • 29. Hu, H., Tao, P., Gao, Z., et al: ‘Vision-based bicycle detection using multiscale block local binary pattern’, Math. Probl. Eng., 2014, 2014, pp. 17.
    30. 30)
      • 30. Li, X.L.L.F.F.J.W., Xiong, H., Bernhard, M., et al: ‘A unified framework for concurrent pedestrian and cyclist detection’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (2), pp. 269281.
    31. 31)
      • 31. Yan, J., Ling, Q., Zhang, Y., et al: ‘An adaptive bicycle detection algorithm based on multi-Gaussian models’, J. Comput. Inf. Syst., 2013, 9, (24), pp. 1007510083.
    32. 32)
      • 32. Ling, B., Gibson, D.R., Middleton, D.: ‘Motorcycle detection and counting using stereo camera, IR camera, and microphone array’. Int. Society for Optics and Photonics, San Diego, CA, USA, 2013.
    33. 33)
      • 33. Bertozzi, M., Broggi, A., Cellario, M., et al: ‘Artificial vision in road vehicles’, Proc. IEEE, 2002, 90, (7), pp. 12581271.
    34. 34)
      • 34. Candamo, J., Shreve, M., Goldgof, D., et al: ‘Understanding transit scenes: a survey on human behavior-recognition algorithms’, IEEE Trans. Intell. Transp. Syst., 2010, 11, (1), pp. 206224.
    35. 35)
      • 35. Dodge, S., Weibel, R., Forootan, E.: ‘Revealing the physics of movement: comparing the similarity of movement characteristics of different types of moving objects’, Comput. Environ. Urban Syst., 2009, 33, (6), pp. 419434.
    36. 36)
      • 36. Moore, J., Kooijman, J., Schwab, A.: ‘Rider motion identification during normal bicycling by means of principal component analysis’, Multibody Syst. Dyn., 2011, 25, pp. 225244.
    37. 37)
      • 37. Frank, J., Mannor, S., Precup, D.: ‘Activity and gait recognition with time-delay embeddings’. Proc. of the AAAI Conf. on Artificial Intelligence, Atlanta, GA, USA, 2010..
    38. 38)
      • 38. Atev, S., Miller, G., Papanikolopoulos, N.: ‘Clustering of vehicle trajectories’, IEEE Trans. Intell. Transp. Syst., 2010, 11, (3), pp. 647657.
    39. 39)
      • 39. Wang, X., Xiaoxu, M., Grimson, W.: ‘Unsupervised activity perception in crowded and complicated scenes using hierarchical Bayesian models’, IEEE Trans. Pattern Anal. Mach. Intell., 2009, 31, (3), pp. 539555.
    40. 40)
      • 40. Morris, B., Trivedi, M.: ‘A survey of vision-based trajectory learning and analysis for surveillance’, IEEE Trans. Circuits Syst. Video Technol., 2008, 18, (8), pp. 11141127.
    41. 41)
      • 41. Morris, B., Trivedi, M.: ‘Learning trajectory patterns by clustering: experimental studies and comparative evaluation’. IEEE Computer Society Computer Vision and Pattern Recognition, Miami, FL, USA, 2009, pp. 312319.
    42. 42)
      • 42. Zhang, Z., Huang, K., Tan, T.: ‘Comparison of similarity measures for trajectory clustering in outdoor surveillance scenes’. Int. Conf. on Pattern Recognition, 2006, 3, pp. 11351138.
    43. 43)
      • 43. Saunier, N., Husseini, A.E., Ismail, K., et al: ‘Pedestrian stride frequency and length estimation in outdoor urban environments using video sensors.’, Transp. Res. Rec., 2011, 2264, pp. 138147.
    44. 44)
      • 44. Zaki, M., Sayed, T.: ‘A framework for automated road-users classification using movement trajectories’, Transp. Res. C, Emerg. Technol., 2013, 33, pp. 5073.
    45. 45)
      • 45. Zaki, M.H., Sayed, T.: ‘Automatic classification of road-user travel modes in a mixed traffic roundabout’. TRB 92nd Annual Meeting Compendium of Papers, Washington, DC, USA, 2013, pp. 120..
    46. 46)
      • 46. Ismail, K., Sayed, T., Saunier, N.: ‘Automated analysis of pedestrian-vehicle conflicts: a context for before-and-after studies’, Transp. Res. Rec., 2010, 2198, pp. 5264.
    47. 47)
      • 47. Ismail, K., Sayed, T., Saunier, N.: ‘A methodology for precise camera calibration for data collection applications in urban traffic scenes’, Can. J. Civ. Eng., 2013, 40, (1), pp. 5767.
    48. 48)
      • 48. Hamad, D., Biela, P.: ‘Introduction to spectral clustering’. Int. Conf. on Information and Communication Technologies: From Theory to Applications, Damascus, Syria, 2008, pp. 16.
    49. 49)
      • 49. Verma, D., Meil, M.: ‘A comparison of spectral clustering algorithms’. Technical Report, University of Washington, Seattle, 2003.
    50. 50)
      • 50. Lu, Z., Carreira-Perpinan, M.: ‘Constrained spectral clustering with affinity propagation’. IEEE Conf. on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 2008, pp. 18.
    51. 51)
      • 51. Zaki, M., Sayed, T., Esawey, M.: ‘A mixed urban traffic road-users classification based on automated video data analysis’, Adv. Transp. Stud., 2015, 35, pp. 5570.
    52. 52)
      • 52. Zaki, M.H., Sayed, T., Mori, G.: ‘Classifying road users in urban scenes using movement patterns’, ASCE J. Comput. Civil Eng., 2012, 27, (4), pp. 395406..
    53. 53)
      • 53. Saunier, N., Sayed, T.: ‘A feature-based tracking algorithm for vehicles in intersections’. The 3rd Canadian Conf. on Computer and Robot Vision, Quebec City, Canada, 2006.
    54. 54)
      • 54. John, A., Ruina, A.: ‘Multiple walking speed–frequency relations are predicted by constrained optimization’, J. Theor. Biol., 2001, 209, (4), pp. 445453.
    55. 55)
      • 55. Sekiya, N., Nagasaki, H.: ‘Reproducibility of the walking patterns of normal young adults: test-retest reliability of the walk ratio (step-length/step-rate).’, Gait Posture, 1998, 7, (3), pp. 225227.
    56. 56)
      • 56. Tageldin, A., Sayed, T., Wang, X.: ‘Can time proximity measures be used as safety indicators in all driving cultures? A case study of motorcycle safety in China’, Transp. Res. Rec., 2015, 2520, pp. 165174.
    57. 57)
      • 57. Mizuike, C., Ohgi, S., Morita, S.: ‘Analysis of stroke patient walking dynamics using a tri-axial accelerometer’, Gait Posture, 2009, 30, (1), pp. 6064.
    58. 58)
      • 58. Menz, H.B., Lord, S.R., Fitzpatrick, R.C.: ‘Acceleration patterns of the head and pelvis when walking on level and irregular surfaces’, Gait Posture, 2003, 18, pp. 3546.
    59. 59)
      • 59. Guyon, I., Elisseeff, A.: ‘An introduction to variable and feature selection’, J. Mach. Learn. Res., 2003, 3, pp. 11571182.
    60. 60)
      • 60. Peng, H., Long, F., Ding, C.: ‘Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (8), pp. 12261238.
    61. 61)
      • 61. Vinh, N.X., Epps, J., Bailey, J.: ‘Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance’, J. Mach. Learn. Res., 2010, 11, pp. 28372854.
    62. 62)
      • 62. manor, L.Z., Perona, P.: ‘Self-tuning spectral clustering’, Adv. Neural Inf. Process. Syst., 2004, 17, pp. 16011608.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0099
Loading

Related content

content/journals/10.1049/iet-its.2017.0099
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address