http://iet.metastore.ingenta.com
1887

Interval type-2 fuzzy-logic-based decision fusion system for air-lane monitoring

Interval type-2 fuzzy-logic-based decision fusion system for air-lane monitoring

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Eliminating mishaps due to human error is a primary focus of the avionics industry. Air-lane monitoring is critical to avert occurrences of such mishaps and is achieved using intelligence imparting techniques. Fuzzy logic is one such technique, which incorporates human knowledge for decision making with ease. Type-1 fuzzy logic for decision fusion is established to be advantageous for air-lane monitoring considering sensor input data. Decision making capabilities of type-1 systems are inconsistent when uncertainties or noise is present in the input data. To overcome this issue, this study discusses on interval type-2 fuzzy logic-based decision fusion software (IT2FLDS) for air-lane monitoring. IT2FLDS is realised using an interval type-2 Mamdani model. Experimental results presented prove that IT2FLDS exhibits better decision making capabilities when compared with type-1 fuzzy logic systems considering uncertainties in input sensor data. IT2FLDS is further extended to include flight level parameters for air-lane monitoring. Results presented prove that IT2FLDS works better than its type-1 counterpart when flight level examples are considered. Using type-2 fuzzy logic systems for avionics problems related to air-lane discipline is advocated.

References

    1. 1)
      • 1. Statistical summary of commercial Jet airplane accidents’, Worldwide Operations 1959–2015 (Boeing Publication, 2015).
        .
    2. 2)
      • İ. Türkmen , Y. Korkmaz .
        2. Türkmen, İ., Korkmaz, Y.: ‘Computation of the pressure altitude using adaptive neuro fuzzy inference system for air data computer in aircrafts’. 2011 IEEE 19th Signal Processing and Communications Applications Conf. (SIU), Antalya, 2011, p. 11411144.
        . 2011 IEEE 19th Signal Processing and Communications Applications Conf. (SIU) , 11411144
    3. 3)
      • K. Xu , G. Zhang .
        3. Xu, K., Zhang, G.: ‘Dynamic neuro-fuzzy control design for civil aviation aircraft in intelligent landing system’. 2011 IEEE Int. Conf. on Mechatronics and Automation, Beijing, 2011, pp. 23592363.
        . 2011 IEEE Int. Conf. on Mechatronics and Automation , 2359 - 2363
    4. 4)
      • D. Michalek , H. Balakrishnan .
        4. Michalek, D., Balakrishnan, H.: ‘Identification of robust routes using convective weather forecasts’. In: Proc. USA/Europe Air Traffic Management R&D Seminar, Napa, 2009.
        . In: Proc. USA/Europe Air Traffic Management R&D Seminar
    5. 5)
      • S. Zelinski .
        5. Zelinski, S.: ‘A framework for integrating arrival, departure, and surface operations scheduling’. 2014 IEEE/AIAA 33rd Digital Avionics Systems Conf. (DASC), Colorado Springs, CO, 2014, pp. 1A1-11A1-17.
        . 2014 IEEE/AIAA 33rd Digital Avionics Systems Conf. (DASC) , 1A1 - 1A1
    6. 6)
      • M. Samà , A. D'Ariano , F. Corman .
        6. Samà, M., D'Ariano, A., Corman, F., et al: ‘Metaheuristics for efficient aircraft scheduling and re-routing at busy terminal control areas’, Transp. Res. C, Emerg. Technol., 2016, 80, pp. 485511.
        . Transp. Res. C, Emerg. Technol. , 485 - 511
    7. 7)
      • M. Samà , A. D'Ariano , P. D'Ariano .
        7. Samà, M., D'Ariano, A., D'Ariano, P., et al: ‘Scheduling models for optimal aircraft traffic control at busy airports: tardiness, priorities, equity and violations considerations’, Omega., 2016, 67, (2017), pp. 8198.
        . Omega , 2017 , 81 - 98
    8. 8)
      • J. Espinosa , J. Vandewalle , V. Wertz . (2004)
        8. Espinosa, J., Vandewalle, J., Wertz, V., et al: ‘Identification and predictive control’, in, ‘Advances in industrial control’ (Springer-Verlag New York, Inc., Secaucus, NJ, 2004), p. 264.
        .
    9. 9)
      • J.R. Raol , S.K. Kashyap .
        9. Raol, J.R., Kashyap, S.K.: ‘Decision fusion using fuzzy logic type 1 in two aviation scenarios’, J. Aerosp. Sci. Technol., 2013, 65, (3), pp. 273286.
        . J. Aerosp. Sci. Technol. , 3 , 273 - 286
    10. 10)
      • O. Castillo , P. Melin . (2012)
        10. Castillo, O., Melin, P.: ‘Recent advances in interval type-2 fuzzy systems’ (Springer, Berlin, Heidelberg, 2012).
        .
    11. 11)
      • L.A. Zadeh .
        11. Zadeh, L.A.: ‘Fuzzy sets, information and control’, J. Inf. Control, 1965, 8, (3), pp. 338353.
        . J. Inf. Control , 3 , 338 - 353
    12. 12)
      • J.L. Chaneau , M. Gunaratne , A.G. Altschaeffl . (1987)
        12. Chaneau, J.L., Gunaratne, M., Altschaeffl, A.G.: ‘An application of type-2 sets to decision making in engineering’ inBezdek, J.C. (Ed.): ‘Analysis of fuzzy information – vol. II: artificial intelligence and decision systems’ (CRC, Boca Raton, FL, 1987), pp. 145151.
        .
    13. 13)
      • R.R. Yager .
        13. Yager, R.R.: ‘Fuzzy subsets of type II in decisions’, J. Cybern., 1980, 10, pp. 137159.
        . J. Cybern. , 137 - 159
    14. 14)
      • M. Wagenknecht , K. Hartmann .
        14. Wagenknecht, M., Hartmann, K.: ‘Application of fuzzy sets of type 2 to the solution of fuzzy equation systems’, Fuzzy Sets Syst.., 1988, 25, pp. 183190.
        . Fuzzy Sets Syst.. , 183 - 190
    15. 15)
      • N.N. Karnik , J.M. Mendel .
        15. Karnik, N.N., Mendel, J.M.: ‘Application of type-2 fuzzy logic system to forecasting of time-series’, Inf. Sci., 1999, 120, pp. 89111.
        . Inf. Sci. , 89 - 111
    16. 16)
      • N.N. Karnik , J.M. Mendel .
        16. Karnik, N.N., Mendel, J.M.: ‘Applications of type-2 fuzzy logic systems: handling the uncertainty associated with surveys’. Proc. IEEE Conf. Fuzzy Syst., Seoul, Korea, 1999, vol. 3, pp. 15461551.
        . Proc. IEEE Conf. Fuzzy Syst. , 1546 - 1551
    17. 17)
      • K.C. Wu .
        17. Wu, K.C.: ‘Fuzzy interval control of mobile robots’, Comput. Elect. Eng., 1996, 22, (3), pp. 211229.
        . Comput. Elect. Eng. , 3 , 211 - 229
    18. 18)
      • R. Raol Jitendra . (2010)
        18. Raol Jitendra, R.: ‘Multi-sensor data fusion with MATLAB’ (CRC Press, Taylor & Francis Group, Boca Raton, FL, USA, 2010).
        .
    19. 19)
      • N.N. Karnik , J.M. Mendel .
        19. Karnik, N.N., Mendel, J.M.: ‘An introduction to type-2 fuzzy logic systems’, Univ. Southern California, Rep., Oct. 1998, http://sipi.usc.edu/~mendel/report.
        .
    20. 20)
      • J.R. Castro , O. Castillo , P. Melin . (2008)
        20. Castro, J.R., Castillo, O., Melin, P., et al: ‘Building fuzzy inference systems with a new interval type-2 fuzzy logic toolbox’, in, ‘Transactions on computational science I (LNCS)’ (Springer, Berlin, Heidelberg, 2008), vol. 4750, pp. 104114.
        .
    21. 21)
      • M. Mizumoto , K. Tanaka .
        21. Mizumoto, M., Tanaka, K.: ‘Some properties of fuzzy sets of type-2’, Inf. Control, 1976, 31, pp. 312340.
        . Inf. Control , 312 - 340
    22. 22)
      • J.M. Mendel , R.I.B. John .
        22. Mendel, J.M., John, R.I.B.: ‘Type-2 fuzzy sets made simple’, IEEE Trans. Fuzzy Syst., 2002, 10, (2), pp. 117127.
        . IEEE Trans. Fuzzy Syst. , 2 , 117 - 127
    23. 23)
      • A. Isaac , P. Willett , Y. Bar-Shalom .
        23. Isaac, A., Willett, P., Bar-Shalom, Y.: ‘MCMC methods for tracking two closely spaced targets using monopulse radar channel signals’, Radar Sonar Navig. IET, 2007, 1, pp. 221229.
        . Radar Sonar Navig. IET , 221 - 229
    24. 24)
      • 24. Federal Aviation Administration: ‘Portable Electronic Devices Aviation Rulemaking Committee Report’, Aviation Rulemaking Committee Report, 30 September 2013. Available at https://www.faa.gov/about/initiatives/ped/media/ped_arc_final_report.pdf.
        .
    25. 25)
      • 25. Director General of Civil Aviation, India, ‘Requirements for implementation of reduced vertical separation minimum (RVSM)’, Civil aviation requirements section 8 – aircraft operations series ‘S’, part II, issue I, 17th January 2013. Available at http://dgca.nic.in/cars/D8S-S2.pdf.
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0095
Loading

Related content

content/journals/10.1049/iet-its.2017.0095
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address