access icon free Integration of auto-steering with adaptive cruise control for improved cornering behaviour

Several works have proposed longitudinal control strategies enabling a vehicle to operate adaptive cruise control and collision avoidance functions. However, no integration with lateral control has been proposed in the current state of the art, which motivates the developments of this work. This study presents an integrated control strategy for adaptive cruise control with auto-steering for highway driving. An appropriate logic-based control strategy is used to create synergies and safe interaction between longitudinal and lateral controllers to obtain both lateral stability and advanced adaptive cruise control functionalities. In particular, an index is proposed to evaluate lateral motion of the vehicle based on previously published experimental studies on human driving. In order to handle unstable lateral motion of the vehicle, the desired acceleration is determined based on physical limitation in braking with cornering situations. Simulation results show that the proposed integrated controller satisfies the performance in terms of autonomous driving, path tracking and collision avoidance for various driving situations.

Inspec keywords: road traffic control; automobiles; adaptive control; stability; velocity control; braking; driver information systems; collision avoidance

Other keywords: adaptive cruise control; collision avoidance; highway driving; autonomous driving; lateral stability; logic-based control strategy; human driving; auto-steering; vehicle lateral motion; longitudinal control strategies; braking; cornering behaviour; path tracking; integrated control strategy; lateral controllers

Subjects: Velocity, acceleration and rotation control; Control engineering computing; Road-traffic system control; Spatial variables control; Traffic engineering computing; Self-adjusting control systems

References

    1. 1)
      • 27. Xu, J., Yang, K., Shao, Y., et al: ‘An experimental study on lateral acceleration of cars in different environments in Sichuan, Southwest China’, Discret. Dyn. Nat. Soc., 2015, 2015, pp. 116.
    2. 2)
      • 10. Nilsson, J., Brannstrom, M., Fredriksson, J., et al: ‘Longitudinal and lateral control for automated yielding maneuvers’, IEEE Trans. Intell. Transp. Syst., 2016, 17, (5), pp. 14041414.
    3. 3)
      • 15. Guvenc, B.A., Kural, E.: ‘A low-cost, multiple-driver-in-the-loop adaptive cruise control simulator’, IEEE Control Syst., 26, (3), pp. 4255.
    4. 4)
      • 13. Hoedemaeker, M.: ‘Driving with intelligent vehicles: driving behaviour with ACC and the acceptance by individual drivers’, Proc. IEEE Intelligent Transportation Systems Conf., 2000, pp. 506509.
    5. 5)
      • 2. Cho, W., Heo, H., Yi, K., et al: ‘Design and evaluation of an integrated vehicle safety system for longitudinal safety and lateral stability’. 22nd Int. Technical Conf. Enhanced Safety of Vehicles, Washington, DC, 2011, pp. 19.
    6. 6)
      • 11. Yu, F., Li, D., Crolla, D.A.: ‘Integrated vehicle dynamics control-state-of-the art review’. IEEE Vehicle Power and Propulsion Conf. (VPPC), September 2008, pp. 35.
    7. 7)
      • 1. Gietelink, O., Ploeg, J., Schutter, B.D., et al: ‘Development of advanced driver assistance systems with vehicle hardware-in-the-loop simulations’, Veh. Syst. Dyn., 2006, 44, (7), pp. 569590.
    8. 8)
      • 16. Laila, D.S., Shakouri, P., Ordys, A., et al: ‘Longitudinal vehicle dynamics using simulink/matlab’. UKACC Int. Conf. Control 2010, 2010, pp. 955960.
    9. 9)
      • 21. Rezaeian, A., Zarringhalam, R., Fallah, S., et al: ‘Novel tire force estimation strategy for real-time implementation on vehicle applications’, IEEE Trans. Veh. Technol., 2015, 64, (6), pp. 22312241.
    10. 10)
      • 17. Kang, J., Hindiyeh, R.Y., Moon, S., et al: ‘Design and testing of a controller for autonomous vehicle path tracking using gps/ins sensors’. Proc. 17th World Congress of IFAC, Seoul, Korea, 2008, pp. 611.
    11. 11)
      • 8. Kim, D., Moon, S., Park, J., et al: ‘Design of an adaptive cruise control/collision avoidance with lane change support for vehicle autonomous driving’. ICROS-SICE Int. Joint Conf., 2009.
    12. 12)
      • 23. Corno, M., Gerard, M., Verhaegen, M., et al: ‘Hybrid abs control using force measurement’, IEEE Trans. Control Syst. Technol., 2012, 20, (5), pp. 12231235.
    13. 13)
      • 31. Solyom, S., Idelchi, A., Salamah, B.B.: ‘Lateral control of vehicle platoons’. 2013 IEEE Int. Conf. Systems, Man, and Cybernetics, 2013, pp. 45614565.
    14. 14)
      • 30. Tecnalia Research & Innovation Foundation. ‘Dynacar version 1.9’. San Sebastián, 2016.
    15. 15)
      • 9. Attia, R., Orjuela, R., Basset, M.: ‘Combined longitudinal and lateral control for automated vehicle guidance’, Veh. Syst. Dyn., 2014, 52, (2), pp. 261279.
    16. 16)
      • 29. Abdul Rachman, A.S., Baldi, S.: ‘Integrated vehicle dynamics control: real-time simulation [video stream]’, YouTube, 2017. Available at https://youtu.be/MBws9cCV5oY.
    17. 17)
      • 20. Cho, W., Yoon, J., Yim, S., et al: ‘Estimation of tire forces for application to vehicle stability control’, IEEE Trans. Veh. Technol., 2010, 59, (2), pp. 638649.
    18. 18)
      • 6. Moon, S., Moon, I., Yi, K.: ‘Design, tuning, and evaluation of a full-range adaptive cruise control system with collision avoidance’, Control Eng. Pract., 2009, 17, (4), pp. 442455.
    19. 19)
      • 19. Shakouri, P., Ordys, A.: ‘Nonlinear model predictive control approach in design of adaptive cruise control with automated switching to cruise control’, Control Eng. Pract., 2014, 26, pp. 160177.
    20. 20)
      • 12. Vahidi, A., Eskandarian, A.: ‘Research advances in intelligent collision avoidance and adaptive cruise control’, IEEE Trans. Intell. Transp. Syst., 2003, 4, (3), pp. 143153.
    21. 21)
      • 28. The MathWorks, Inc.. ‘MATLAB and Simulink product families release 2015b’. (Natick, Massachusetts, 2016).
    22. 22)
      • 3. Reschka, A., Böhmer, J.R., Saust, F., et al: ‘Safe, dynamic and comfortable longitudinal control for an autonomous vehicle’. IEEE Intelligent Vehicle Symp. Proc., 2012, pp. 346351.
    23. 23)
      • 18. Rajamani, R.: ‘Vehicle dynamics and control’. Mechanical Engineering Series (Springer, Boston, MA, USA, 2012).
    24. 24)
      • 4. Yi, K., Lee, S., Kwon, Y.D.: ‘An investigation of intelligent cruise control laws for passenger vehicles’, Proc. Inst. Mech. Eng. D, J. Automob. Eng., 2001, 215, (2), pp. 159169.
    25. 25)
      • 5. Naus, G.J.L., Ploeg, J., Van de Molengraft, M.J.G., et al: ‘Design and implementation of parameterized adaptive cruise control: an explicit model predictive control approach’, Control Eng. Pract., 2010, 18, (8), pp. 882892.
    26. 26)
      • 25. Kim, D., Kang, J., Yi, K.: ‘Control strategy for high-speed autonomous driving in structured road’. 14th Int. IEEE Conf. Intelligent Transportation Systems, Washington, DC, USA, 2011, pp. 57.
    27. 27)
      • 24. Katriniok, A., Maschuw, J.P., Christen, F., et al: ‘Optimal vehicle dynamics control for combined longitudinal and lateral autonomous vehicle guidance’, 2013 European Control Conference (ECC), Zurich, 2013, pp. 974979.
    28. 28)
      • 22. Arat, M.A., Singh, K., Taheri, S.: ‘Optimal tire force allocation by means of smarttire technology’, SAE Int. J. Passeng. Cars, Mech. Syst., 2013, 6, pp. 163176.
    29. 29)
      • 14. Marsden, G., McDonald, M., Brackstone, M.: ‘Towards an understanding of adaptive cruise control’, Transp. Res. C, Emerg. Technol., 2001, 9, (1), pp. 3351.
    30. 30)
      • 26. Noh, K., Jung, D., Choi, H., et al: ‘Development of ergonomic driver model considering human factors’. SAE Technical Paper, 2007.
    31. 31)
      • 7. Eyisi, E., Zhang, Z., Koutsoukos, X., et al: ‘Model-based control design and integration of cyberphysical systems: an adaptive cruise control case study’, J. Control Sci. Eng., 2013, 2013, pp. 115.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0089
Loading

Related content

content/journals/10.1049/iet-its.2017.0089
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading