http://iet.metastore.ingenta.com
1887

Predicting the future location of cars on urban street network by chaining spatial web services

Predicting the future location of cars on urban street network by chaining spatial web services

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The use of web services for analysing and visualising maps has received great attention recently, because the complicated analysis of spatial data requires different processes to be run consecutively. Predicting the future location of a vehicle on a street network is one of the most challenging analyses used for improving context-aware location-based services, intelligent transportation systems and criminology. In this research, the authors present a new short-term prediction algorithm and explore the required analyses and web services. They present an appropriate method for chaining these web services to predict location(s). To assess their methodology, they developed a prototype system and tested for trajectories in Beijing. This system calculates the prediction time for a specified car to show the predicted future location in the street network. Their results showed that the average transferred data volume increases as the prediction period increases. The results also showed that the prediction algorithm has 75% accuracy at 1 min and 87.5% accuracy at 2 and 3 min. The implemented chaining method reduces the complexity of the location prediction algorithm for users because they do not need to know the processes. The outputs from this system can be used as input parameters for other web-based applications.

References

    1. 1)
      • S. Abrahama , P.S. Lal .
        1. Abrahama, S., Lal, P.S.: ‘Spatio-temporal similarity of network-constrained moving object trajectories using sequence alignment of travel locations’, Transp. Res. C, 2012, 23, pp. 109112.
        . Transp. Res. C , 109 - 112
    2. 2)
      • V.S. Tseng , E.H. Lu .
        2. Tseng, V.S., Lu, E.H.: ‘Energy-efficient real-time object tracking in multi-level sensor networks by mining and predicting movement patterns’, J. Syst. Soft., 2009, 82, (4), pp. 697706.
        . J. Syst. Soft. , 4 , 697 - 706
    3. 3)
      • X. Liu , H.A. Karimi .
        3. Liu, X., Karimi, H.A.: ‘Location awareness through trajectory prediction’, Comput. Environ. Urban Syst., 2006, 30, (6), pp. 741756.
        . Comput. Environ. Urban Syst. , 6 , 741 - 756
    4. 4)
      • 4. OGC - Open Geospatial Consortium. Available at www.opengeospatial.org, accessed August 2014.
        .
    5. 5)
      • B. Stollberg , A. Zipf .
        5. Stollberg, B., Zipf, A.: ‘Development of a WPS process chaining tool and application in a disaster management use case for urban areas’. Urban Regional Data Management, Ljubljana, Slovenia, 2009, pp. 269285.
        . Urban Regional Data Management , 269 - 285
    6. 6)
      • (2002)
        6. ISO19119. ‘Geographic information – Services’, 2002.
        .
    7. 7)
      • N. Alameh .
        7. Alameh, N.: ‘Service chaining of interoperable geographic information web services’, Int. Comput., 2002, 7, (1), pp. 2229.
        . Int. Comput. , 1 , 22 - 29
    8. 8)
      • X. Xie , Y. Bian , F. Meng .
        8. Xie, X., Bian, Y., Meng, F.: ‘Distributed geospatial analysis through web processing service: a case study of earthquake disaster assessment’, J. Soft., 2010, 5, (6), pp. 671679.
        . J. Soft. , 6 , 671 - 679
    9. 9)
      • P. Zhao , L. Di , G. Yu .
        9. Zhao, P., Di, L., Yu, G.: ‘Building asynchronous geospatial processing workflows with web services’, Comput. Geosci., 2012, 39, pp. 3441.
        . Comput. Geosci. , 34 - 41
    10. 10)
      • V. Rautenbach , S. Coetzee , A. Iwaniak .
        10. Rautenbach, V., Coetzee, S., Iwaniak, A.: ‘Orchestrating OGC web services to produce thematic maps in a spatial information infrastructure’, Comput. Environ. Urban Syst., 2013, 37, pp. 107120.
        . Comput. Environ. Urban Syst. , 107 - 120
    11. 11)
      • Z. Wang , H. Li , X. Shen .
        11. Wang, Z., Li, H., Shen, X., et al: ‘Tracking and predicting moving targets in hierarchical sensor networks’. IEEE Int. Conf. Networking, Sensing and Control, Sanya, China, 2008, pp. 11691173.
        . IEEE Int. Conf. Networking, Sensing and Control , 1169 - 1173
    12. 12)
      • J. Engelbrecht , M.J. Booysen , G.J. van Rooyen .
        12. Engelbrecht, J., Booysen, M.J., van Rooyen, G.J., et al: ‘Survey of smartphone-based sensing in vehicles for intelligent transportation system applications’, IET Intell. Transp. Syst., 2015, 9, (10), pp. 924935.
        . IET Intell. Transp. Syst. , 10 , 924 - 935
    13. 13)
      • L. Chen , M. Lv , G. Chen .
        13. Chen, L., Lv, M., Chen, G.: ‘A system for destination and future route prediction based on trajectory mining’, Pervasive Mob. Comput., 2010, 6, (6), pp. 657676.
        . Pervasive Mob. Comput. , 6 , 657 - 676
    14. 14)
      • L. Chen , M. Lv , Q. Ye .
        14. Chen, L., Lv, M., Ye, Q., et al: ‘A personal route prediction system based on trajectory data mining’, Inf. Sci., 2011, 181, (7), pp. 12641284.
        . Inf. Sci. , 7 , 1264 - 1284
    15. 15)
      • S.W. Kim , J.I. Won , J.D. Kim .
        15. Kim, S.W., Won, J.I., Kim, J.D., et al: ‘Path prediction of moving objects on road networks through analyzing past trajectories’, Knowl. Based Intell. Inf. Eng. Syst., 2007, 4692, pp. 379389.
        . Knowl. Based Intell. Inf. Eng. Syst. , 379 - 389
    16. 16)
      • J. Schweizer , S. Bernardi , F Rupi .
        16. Schweizer, J., Bernardi, S., Rupi, F: ‘Map-matching algorithm applied to bicycle global positioning system traces in Bologna’. IET Intell. Transp. Syst., 2016, 10, (4), pp. 244250.
        . IET Intell. Transp. Syst. , 4 , 244 - 250
    17. 17)
      • S.M. Hashemi , M. Almasi , R. Ebrazi .
        17. Hashemi, S.M., Almasi, M., Ebrazi, R., et al: ‘Predicting the next state of traffic by data mining classification techniques’, Int. J. Smart Electr. Eng., 2012, 1, (3), pp. 181193.
        . Int. J. Smart Electr. Eng. , 3 , 181 - 193
    18. 18)
      • B. Abduhai , H. Porwal , W. Recker .
        18. Abduhai, B., Porwal, H., Recker, W.: ‘Short-term traffic flow prediction using neuro-genetic algorithms’, J. Intell. Transp. Syst., 2002, 7, (1), pp. 341.
        . J. Intell. Transp. Syst. , 1 , 3 - 41
    19. 19)
      • Y. Lv , Y. Duan , W. Kang .
        19. Lv, Y., Duan, Y., Kang, W., et al: ‘Traffic flow prediction with big data: a deep learning approach’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (2), pp. 865873.
        . IEEE Trans. Intell. Transp. Syst. , 2 , 865 - 873
    20. 20)
      • M. Tan , S.C. Wong , J. Xu .
        20. Tan, M., Wong, S.C., Xu, J., et al: ‘An aggregation approach to short-term traffic flow prediction’, IEEE Trans. Intell. Transp. Syst., 2009, 10, (1), pp. 6069.
        . IEEE Trans. Intell. Transp. Syst. , 1 , 60 - 69
    21. 21)
      • S. Kamkar , R. Safabakhsh .
        21. Kamkar, S., Safabakhsh, R.: ‘Vehicle detection, counting and classification in various conditions’, IET Intell. Transp. Syst., 2016, 10, (6), pp. 406413.
        . IET Intell. Transp. Syst. , 6 , 406 - 413
    22. 22)
      • A. Noulas , S. Scellato , N. Lathia .
        22. Noulas, A., Scellato, S., Lathia, N., et al: ‘Mining user mobility features for next place prediction in location-based services’. 2012 IEEE 12th Int. Conf. Data Mining (ICDM), Brussels, Belgium, 2012.
        . 2012 IEEE 12th Int. Conf. Data Mining (ICDM)
    23. 23)
      • P. Yue , L. Di , W. Yang .
        23. Yue, P., Di, L., Yang, W., et al: ‘Semantics-based automatic composition of geospatial Web service chains’, Comput. Geosci., 2007, 33, (5), pp. 649665.
        . Comput. Geosci. , 5 , 649 - 665
    24. 24)
      • M. Sheshagiri , M. DesJardins , T. Finin .
        24. Sheshagiri, M., DesJardins, M., Finin, T.: ‘A planner for composing services described in DAML-S’. The Int. Conf. Automated Planning & Scheduling (ICAPS'03) Workshop on Planning for Web Services, Trento, Italy, 2003.
        . The Int. Conf. Automated Planning & Scheduling (ICAPS'03) Workshop on Planning for Web Services
    25. 25)
      • E. Sirin , B. Parsia , D. Wu .
        25. Sirin, E., Parsia, B., Wu, D., et al: ‘HTN planning for web service composition using SHOP2’, Web Semant. Sci. Services Agents on the World Wide Web, 2004, 1, (4), pp. 377396.
        . Web Semant. Sci. Services Agents on the World Wide Web , 4 , 377 - 396
    26. 26)
      • E. Tiakas , A.N. Papadopoulos , A. Nanopoulos .
        26. Tiakas, E., Papadopoulos, A.N., Nanopoulos, A., et al: ‘Searching for similar trajectories in spatial networks’, J. Syst. Soft., 2009, 82, (5), pp. 117.
        . J. Syst. Soft. , 5 , 1 - 17
    27. 27)
      • J. Lee , J. Hanand , K. Whang .
        27. Lee, J., Hanand, J., Whang, K.: ‘Trajectory clustering: a partition-and-group framework’. 2007 ACM SIGMOD Int. Conf. Management of Data, New York, USA, 2007, pp. 593604.
        . 2007 ACM SIGMOD Int. Conf. Management of Data , 593 - 604
    28. 28)
      • H. Liu , M. Schneider .
        28. Liu, H., Schneider, M.: ‘Similarity measurement of moving object trajectories’. Third ACM SIGSPATIAL Int. Workshop on GeoStreaming, New York, USA, 2012, pp. 1922.
        . Third ACM SIGSPATIAL Int. Workshop on GeoStreaming , 19 - 22
    29. 29)
      • M. Shaeri , R.A. Abbaspour .
        29. Shaeri, M., Abbaspour, R.A.: ‘Comparison of distance functions for similarity measurement in spatial trajectories’, J. Geomatics Sci. Technol., 2014, 4, (3), pp. 201211.
        . J. Geomatics Sci. Technol. , 3 , 201 - 211
    30. 30)
      • M. Sharif , A.A. Alesheikh .
        30. Sharif, M., Alesheikh, A.A.: ‘Context-awareness in similarity measures and pattern discoveries of trajectories: a context-based dynamic time warping method. ‘, GISci. Remote Sens., 2017, 54, (3), pp. 127.
        . ‘, GISci. Remote Sens. , 3 , 1 - 27
    31. 31)
      • D.H. Douglas , Th.K. Peucker .
        31. Douglas, D.H., Peucker, Th.K.: ‘Algorithms for the reduction of the number of points required to represent a digitized line or its caricature’, Canadian Cartographer, 1973, 10, (2), pp. 112122.
        . Canadian Cartographer , 2 , 112 - 122
    32. 32)
      • Y. Zheng , Q. Li , Y. Chen .
        32. Zheng, Y., Li, Q., Chen, Y., et al: ‘Understanding mobility based on GPS data’. ACM Conf. Ubiquitous Computing, Seoul, Korea, 2008, pp. 312321.
        . ACM Conf. Ubiquitous Computing , 312 - 321
    33. 33)
      • Y. Zheng , X. Xie , W. Ma .
        33. Zheng, Y., Xie, X., Ma, W.: ‘Geolife: a collaborative social networking service among user, location and trajectory’. Data Engineering Bulletin, 2010, 33, (2), pp. 3239.
        . Data Engineering Bulletin , 2 , 32 - 39
    34. 34)
      • Y. Zheng , L. Zhang , X. Xie .
        34. Zheng, Y., Zhang, L., Xie, X., et al: ‘Mining interesting locations and travel sequences from GPS trajectories’. Int. Conf. World Wild Web, Madrid, Spain, 2009, pp. 791800.
        . Int. Conf. World Wild Web , 791 - 800
    35. 35)
      • G. Yavaş , D. Katsaros , Ö. Ulusoy .
        35. Yavaş, G., Katsaros, D., Ulusoy, Ö., et al: ‘A data mining approach for location prediction in mobile environments’, Data Knowl. Eng., 2005, 54, (2), pp. 121146.
        . Data Knowl. Eng. , 2 , 121 - 146
    36. 36)
      • J.J. Ying , W. Lee , T. Weng .
        36. Ying, J.J., Lee, W., Weng, T.: ‘Semantic trajectory mining for location prediction’. Int. Conf. Advances in Geographic Information Systems, Chicago, Illinois, 2011, pp. 3443.
        . Int. Conf. Advances in Geographic Information Systems , 34 - 43
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0085
Loading

Related content

content/journals/10.1049/iet-its.2017.0085
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address