http://iet.metastore.ingenta.com
1887

Extensive exploration of comprehensive vehicle attributes using D-CNN with weighted multi-attribute strategy

Extensive exploration of comprehensive vehicle attributes using D-CNN with weighted multi-attribute strategy

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

As a classical machine learning method, multi-task learning (MTL) has been widely applied in computer vision technology. Due to deep convolutional neural network (D-CNN) having strong ability of feature representation, the combination of MTL and D-CNN has attracted much attention from researchers recently. However, this kind of combination has rarely been explored in the field of vehicle analysis. The authors propose a D-CNN enhanced with weighted multi-attribute strategy for extensive exploration of comprehensive vehicle attributes over surveillance images. Specifically, regarding to recognising vehicle model and make/manufacturer, several related attributes as auxiliary tasks are incorporated in the training process of D-CNN structure. The proposed strategy focuses more on the main task compared with traditional MTL methods, which has assigned different weights for the main task and auxiliary tasks rather than treating all involved tasks equally. To the extent of their knowledge, this is the first report relating to the combination of D-CNN and weighted MTL for exploration of comprehensive vehicle attributes. The following experiments will show that the proposed approach outperforms the state-of-the-art method for the vehicle recognition and improves the accuracy rate by about 10% for the analysis of other vehicle attributes on the recently public CompCars dataset.

References

    1. 1)
      • C. Hu , X. Bai , L. Qi .
        1. Hu, C., Bai, X., Qi, L., et al: ‘Vehicle color recognition with spatial pyramid deep learning’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (5), pp. 29252934.
        . IEEE Trans. Intell. Transp. Syst. , 5 , 2925 - 2934
    2. 2)
      • S. Sivaraman , M.M. Trivedi .
        2. Sivaraman, S., Trivedi, M.M.: ‘A general active-learning framework for on-road vehicle recognition and tracking’, IEEE Trans. Intell. Transp. Syst., 2010, 11, (2), pp. 267276.
        . IEEE Trans. Intell. Transp. Syst. , 2 , 267 - 276
    3. 3)
      • Y. Huang , R. Wu , Y. Sun .
        3. Huang, Y., Wu, R., Sun, Y., et al: ‘Vehicle logo recognition system based on convolutional neural networks with a pretraining strategy’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (4), pp. 19511960.
        . IEEE Trans. Intell. Transp. Syst. , 4 , 1951 - 1960
    4. 4)
      • H. Peng , X. Wang , H. Wang .
        4. Peng, H., Wang, X., Wang, H., et al: ‘Recognition of low-resolution logos in vehicle images based on statistical random sparse distribution’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (2), pp. 681691.
        . IEEE Trans. Intell. Transp. Syst. , 2 , 681 - 691
    5. 5)
      • J.W. Hsieh , L.C. Chen , D.Y. Chen .
        5. Hsieh, J.W., Chen, L.C., Chen, D.Y.: ‘Symmetrical surf and its applications to vehicle detection and vehicle make and model recognition’, IEEE Trans. Intell. Transp. Syst., 2014, 15, (1), pp. 620.
        . IEEE Trans. Intell. Transp. Syst. , 1 , 6 - 20
    6. 6)
      • A. Bosch , A. Zisserman , X. Muñoz .
        6. Bosch, A., Zisserman, A., Muñoz, X.: ‘Scene classification via pLSA’. European Conf. Computer Vision (ECCV), May 2006, pp. 517530.
        . European Conf. Computer Vision (ECCV) , 517 - 530
    7. 7)
      • D.G. Lowe .
        7. Lowe, D.G.: ‘Distinctive image features from scale-invariant keypoints’, Int. J. Comput. Vis., 2004, 60, (2), pp. 91110.
        . Int. J. Comput. Vis. , 2 , 91 - 110
    8. 8)
      • A.P. Psyllos , C.N.E. Anagnostopoulos , E. Kayafas .
        8. Psyllos, A.P., Anagnostopoulos, C.N.E., Kayafas, E.: ‘Vehicle logo recognition using a SIFT-based enhanced matching scheme’, IEEE Trans. Intell. Transp. Syst., 2010, 11, (2), pp. 322328.
        . IEEE Trans. Intell. Transp. Syst. , 2 , 322 - 328
    9. 9)
      • S. Yu , S. Zheng , H. Yang .
        9. Yu, S., Zheng, S., Yang, H., et al: ‘Vehicle logo recognition based on bag-of-words’. Advanced Video and Signal Based Surveillance (AVSS), August 2013, pp. 353358.
        . Advanced Video and Signal Based Surveillance (AVSS) , 353 - 358
    10. 10)
      • J.R. Uijlings , A.W. Smeulders , R.J. Scha .
        10. Uijlings, J.R., Smeulders, A.W., Scha, R.J.: ‘Real-time bag of words, approximately’. ACM Int. Conf. Image and Video Retrieval (CIVR), July 2009, p. 6.
        . ACM Int. Conf. Image and Video Retrieval (CIVR) , 6
    11. 11)
      • S. Lazebnik , C. Schmid , J. Ponce .
        11. Lazebnik, S., Schmid, C., Ponce, J.: ‘Beyond bags of features: spatial pyramid matching for recognizing natural scene categories’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), June 2006, vol. 2, pp. 21692178.
        . IEEE Conf. Computer Vision and Pattern Recognition (CVPR) , 2169 - 2178
    12. 12)
      • G. Loy , J.O. Eklundh .
        12. Loy, G., Eklundh, J.O.: ‘Detecting symmetry and symmetric constellations of features’. European Conf. Computer Vision (ECCV), May 2006, pp. 508521.
        . European Conf. Computer Vision (ECCV) , 508 - 521
    13. 13)
      • M.M. Nabeel , M.F. el Deen , S. El-Kader .
        13. Nabeel, M.M., el Deen, M.F., El-Kader, S.: ‘Intelligent vehicle recognition based on wireless sensor network’, Int. J. Comput. Sci. Issues, 2013, 10, (4), pp. 164174.
        . Int. J. Comput. Sci. Issues , 4 , 164 - 174
    14. 14)
      • Z. Dong , Y. Wu , M. Pei .
        14. Dong, Z., Wu, Y., Pei, M., et al: ‘Vehicle type classification using a semisupervised convolutional neural network’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (4), pp. 22472256.
        . IEEE Trans. Intell. Transp. Syst. , 4 , 2247 - 2256
    15. 15)
      • P. Chen , X. Bai , W. Liu .
        15. Chen, P., Bai, X., Liu, W.: ‘Vehicle color recognition on urban road by feature context’, IEEE Trans. Intell. Transp. Syst., 2014, 15, (5), pp. 23402346.
        . IEEE Trans. Intell. Transp. Syst. , 5 , 2340 - 2346
    16. 16)
      • C. Pan , Z. Yan , X. Xu .
        16. Pan, C., Yan, Z., Xu, X., et al: ‘Vehicle logo recognition based on deep learning architecture in video surveillance for intelligent traffic system’. IET Int. Conf. Smart and Sustainable City (ICSSC), August 2013, pp. 123126.
        . IET Int. Conf. Smart and Sustainable City (ICSSC) , 123 - 126
    17. 17)
      • C.C. Chang , C.J. Lin .
        17. Chang, C.C., Lin, C.J.: ‘LIBSVM: a library for support vector machines’, ACM Trans. Intell. Syst. Technol., 2011, 2, (3), p. 27.
        . ACM Trans. Intell. Syst. Technol. , 3 , 27
    18. 18)
      • A.H. Abdulnabi , G. Wang , J. Lu .
        18. Abdulnabi, A.H., Wang, G., Lu, J., et al: ‘Multi-task CNN model for attribute prediction’, IEEE Trans. Multimed., 2015, 17, (11), pp. 19491959.
        . IEEE Trans. Multimed. , 11 , 1949 - 1959
    19. 19)
      • J. Huang , W. Xia , S. Yan .
        19. Huang, J., Xia, W., Yan, S.: ‘Deep search with attribute-aware deep network’. ACM Int. Conf. Multimedia (MM), November 2014, pp. 731732.
        . ACM Int. Conf. Multimedia (MM) , 731 - 732
    20. 20)
      • S. Li , Z.Q. Liu , A.B. Chan .
        20. Li, S., Liu, Z.Q., Chan, A.B.: ‘Heterogeneous multi-task learning for human pose estimation with deep convolutional neural network’. IEEE Conf. Computer Vision and Pattern Recognition Workshops (CVPR), June 2014, pp. 482489.
        . IEEE Conf. Computer Vision and Pattern Recognition Workshops (CVPR) , 482 - 489
    21. 21)
      • D. Yi , Z. Lei , S.Z. Li .
        21. Yi, D., Lei, Z., Li, S.Z.: ‘Age estimation by multi-scale convolutional network’. Asian Conf. Computer Vision (ACCV), November 2014, pp. 144158.
        . Asian Conf. Computer Vision (ACCV) , 144 - 158
    22. 22)
      • C. Zhang , Z. Zhang .
        22. Zhang, C., Zhang, Z.: ‘Improving multiview face detection with multi-task deep convolutional neural networks’. IEEE Winter Conf. Applications of Computer Vision (WACV), March 2014, pp. 10361041.
        . IEEE Winter Conf. Applications of Computer Vision (WACV) , 1036 - 1041
    23. 23)
      • D. Chen , B. Mak , C.C. Leung .
        23. Chen, D., Mak, B., Leung, C.C., et al: ‘Joint acoustic modeling of triphones and trigraphemes by multi-task learning deep neural networks for low-resource speech recognition’. Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), May 2014, pp. 55925596.
        . Int. Conf. Acoustics, Speech and Signal Processing (ICASSP) , 5592 - 5596
    24. 24)
      • M.L. Seltzer , J. Droppo .
        24. Seltzer, M.L., Droppo, J.: ‘Multi-task learning in deep neural networks for improved phoneme recognition’. Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), May 2013, pp. 69656969.
        . Int. Conf. Acoustics, Speech and Signal Processing (ICASSP) , 6965 - 6969
    25. 25)
      • M.D. Zeiler , D. Krishnan , G.W. Taylor .
        25. Zeiler, M.D., Krishnan, D., Taylor, G.W., et al: ‘Deconvolutional networks’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), June 2010, pp. 25282535.
        . IEEE Conf. Computer Vision and Pattern Recognition (CVPR) , 2528 - 2535
    26. 26)
      • L. Wan , M. Zeiler , S. Zhang .
        26. Wan, L., Zeiler, M., Zhang, S., et al: ‘Regularization of neural networks using dropconnect’. Int. Conf. Machine Learning (ICML), June 2013, pp. 10581066.
        . Int. Conf. Machine Learning (ICML) , 1058 - 1066
    27. 27)
      • M.D. Zeiler , R. Fergus .
        27. Zeiler, M.D., Fergus, R.: ‘Visualizing and understanding convolutional networks’. European Conf. Computer Vision (ECCV), September 2014, pp. 818833.
        . European Conf. Computer Vision (ECCV) , 818 - 833
    28. 28)
      • J.R. Uijlings , K.E. van de Sande , T. Gevers .
        28. Uijlings, J.R., van de Sande, K.E., Gevers, T., et al: ‘Selective search for object recognition’, Int. J. Comput. Vis., 2013, 104, (2), pp. 154171.
        . Int. J. Comput. Vis. , 2 , 154 - 171
    29. 29)
      • 29. ‘arXiv.org’, http://arxiv.org/abs/1301.3557, accessed 16 Jan 2013.
        .
    30. 30)
      • W. Ouyang , X. Wang , X. Zeng .
        30. Ouyang, W., Wang, X., Zeng, X., et al: ‘Deepid-net: Deformable deep convolutional neural networks for object detection’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), June 2015, pp. 24032412.
        . IEEE Conf. Computer Vision and Pattern Recognition (CVPR) , 2403 - 2412
    31. 31)
      • I.J. Goodfellow , D. Warde-Farley , M. Mirza .
        31. Goodfellow, I.J., Warde-Farley, D., Mirza, M., et al: ‘Maxout networks’. Int. Conf. Machine Learning (ICML), June 2013, pp. 13191327.
        . Int. Conf. Machine Learning (ICML) , 1319 - 1327
    32. 32)
      • Y. LeCun , L. Bottou , Y. Bengio .
        32. LeCun, Y., Bottou, L., Bengio, Y., et al: ‘Gradient-based learning applied to document recognition’, Proc. IEEE, 1998, 86, (11), pp. 22782324.
        . Proc. IEEE , 11 , 2278 - 2324
    33. 33)
      • A. Krizhevsky , I. Sutskever , G.E. Hinton .
        33. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ‘Imagenet classification with deep convolutional neural networks’. Advances in Neural Information Processing Systems (NIPS), December 2012, pp. 10971105.
        . Advances in Neural Information Processing Systems (NIPS) , 1097 - 1105
    34. 34)
      • 34. ‘arXiv.org’, http://arxiv.org/abs/1312.4400, accessed 4 Mar 2014.
        .
    35. 35)
      • R. Girshick , J. Donahue , T. Darrell .
        35. Girshick, R., Donahue, J., Darrell, T., et al: ‘Rich feature hierarchies for accurate object detection and semantic segmentation’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), June 2014, pp. 580587.
        . IEEE Conf. Computer Vision and Pattern Recognition (CVPR) , 580 - 587
    36. 36)
      • K. He , X. Zhang , S. Ren .
        36. He, K., Zhang, X., Ren, S., et al: ‘Spatial pyramid pooling in deep convolutional networks for visual recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2015, 37, (9), pp. 19041916.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 9 , 1904 - 1916
    37. 37)
      • R. Caruana . (1998)
        37. Caruana, R.: ‘Multitask learning, learning to learn’ (Springer Press, 1998), pp. 95133.
        .
    38. 38)
      • L. Han , Y. Zhang , G. Song .
        38. Han, L., Zhang, Y., Song, G., et al: ‘Encoding tree sparsity in multi-task learning: a probabilistic framework’. AAAI Conf. Artificial Intelligence (AI), June 2014, pp. 18541860.
        . AAAI Conf. Artificial Intelligence (AI) , 1854 - 1860
    39. 39)
      • W. Ouyang , X. Chu , X. Wang .
        39. Ouyang, W., Chu, X., Wang, X.: ‘Multi-source deep learning for human pose estimation’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), June 2014, pp. 23292336.
        . IEEE Conf. Computer Vision and Pattern Recognition (CVPR) , 2329 - 2336
    40. 40)
      • R. Collobert , J. Weston .
        40. Collobert, R., Weston, J.: ‘A unified architecture for natural language processing: deep neural networks with multitask learning’. Int. Conf. Machine Learning (ICML), July 2008, pp. 160167.
        . Int. Conf. Machine Learning (ICML) , 160 - 167
    41. 41)
      • A. Argyriou , T. Evgeniou , M. Pontil .
        41. Argyriou, A., Evgeniou, T., Pontil, M.: ‘Convex multi-task feature learning’, Mach. Learn., 2008, 73, (3), pp. 243272.
        . Mach. Learn. , 3 , 243 - 272
    42. 42)
      • E.V. Bonilla , K.M. Chai , C. Williams .
        42. Bonilla, E.V., Chai, K.M., Williams, C.: ‘Multi-task Gaussian process prediction’. Advances in Neural Information Processing Systems (NIPS), December 2007, pp. 153160.
        . Advances in Neural Information Processing Systems (NIPS) , 153 - 160
    43. 43)
      • L. Jacob , J.P. Vert , F.R. Bach .
        43. Jacob, L., Vert, J.P., Bach, F.R.: ‘Clustered multi-task learning: a convex formulation’. Advances in Neural Information Processing Systems (NIPS), December 2009, pp. 745752.
        . Advances in Neural Information Processing Systems (NIPS) , 745 - 752
    44. 44)
      • T. Kato , H. Kashima , M. Sugiyama .
        44. Kato, T., Kashima, H., Sugiyama, M., et al: ‘Multi-task learning via conic programming’. Advances in Neural Information Processing Systems (NIPS), December 2008, pp. 737744.
        . Advances in Neural Information Processing Systems (NIPS) , 737 - 744
    45. 45)
      • C. Li , J. Zhu , J. Chen .
        45. Li, C., Zhu, J., Chen, J.: ‘Bayesian max-margin multi-task learning with data augmentation’. Int. Conf. Machine learning (ICML), June 2014, pp. 415423.
        . Int. Conf. Machine learning (ICML) , 415 - 423
    46. 46)
      • Z. Zhang , P. Luo , C.C. Loy .
        46. Zhang, Z., Luo, P., Loy, C.C., et al: ‘Facial landmark detection by deep multi-task learning’. European Conf. Computer Vision (ECCV), September 2014, pp. 94108.
        . European Conf. Computer Vision (ECCV) , 94 - 108
    47. 47)
      • X. Liu , W. Liu , H. Ma .
        47. Liu, X., Liu, W., Ma, H., et al: ‘Large-scale vehicle re-identification in urban surveillance videos’. IEEE Int. Conf. Multimedia and Expo (ICME), July 2016, pp. 16.
        . IEEE Int. Conf. Multimedia and Expo (ICME) , 1 - 6
    48. 48)
      • Y. Zhou , L. Liu , L. Shao .
        48. Zhou, Y., Liu, L., Shao, L., et al: ‘DAVE: A unified framework for fast vehicle detection and annotation’. European Conf. Computer Vision (ECCV), October 2016, pp. 278293.
        . European Conf. Computer Vision (ECCV) , 278 - 293
    49. 49)
      • L. Yang , P. Luo , C. Change Loy .
        49. Yang, L., Luo, P., Change Loy, C., et al: ‘A large-scale car dataset for fine-grained categorization and verification’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), June 2015, pp. 39733981.
        . IEEE Conf. Computer Vision and Pattern Recognition (CVPR) , 3973 - 3981
    50. 50)
      • S.J.D. Prince , J.H. Elder .
        50. Prince, S.J.D., Elder, J.H.: ‘Probabilistic linear discriminant analysis for inferences about identity’. IEEE Int. Conf. Computer Vision (ICCV), October 2007, pp. 18.
        . IEEE Int. Conf. Computer Vision (ICCV) , 1 - 8
    51. 51)
      • 51. ‘arXiv.org’, http://arxiv.org/abs/1312.6229, accessed 21 December 2013.
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0066
Loading

Related content

content/journals/10.1049/iet-its.2017.0066
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address