http://iet.metastore.ingenta.com
1887

Vehicle collision prediction at intersections based on comparison of minimal distance between vehicles and dynamic thresholds

Vehicle collision prediction at intersections based on comparison of minimal distance between vehicles and dynamic thresholds

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Accurate collision prediction algorithms are important to provide drivers reliable warning messages. This study introduces a novel approach for collision prediction at intersections. The algorithm involves the use of an index called ‘minimal future distance (MFD)’, which is defined to be a future distance (FD) between the subject vehicle and the primary other vehicle, and a two-level dynamic threshold for performing the collision prediction task. Real-time vehicle motion information and surrounding road geometry are utilised to forecast FDs and identify MFD within an upcoming time horizon. The dynamic threshold in both emergency warning and normal warning situations consists of two parts, a vehicle heading direction-related part and a speed value-related part. Potential collisions are determined by the comparison of MFD with different dynamic thresholds in different driving scenarios. The combined use of vehicle real-time state and road geometry in the algorithm significantly increased the collision prediction accuracy. Furthermore, the use of dynamic thresholds ensured the promptness and robustness of the collision warning system. Simulation results show that the false positive rate and false negative rate of severe collisions at intersections can be robustly eliminated and those of marginal collisions can be kept low at 2.4 and 3.6%, respectively.

References

    1. 1)
      • R. Miller , Q. Huang .
        1. Miller, R., Huang, Q.: ‘An adaptive peer-to-peer collision warning system’. Proc. Vehicular Technology Conf. (VTC), Birmingham, Alabama, 2002, pp. 317321.
        . Proc. Vehicular Technology Conf. (VTC) , 317 - 321
    2. 2)
      • C. Huang , S. Lin , C. Yang .
        2. Huang, C., Lin, S., Yang, C., et al: ‘A collision pre-warning algorithm based on V2V communication’. Proc. 4th Int. Conf. on Ubiquitous Information Technologies & Applications, 2009, pp. 16.
        . Proc. 4th Int. Conf. on Ubiquitous Information Technologies & Applications , 1 - 6
    3. 3)
      • O. Kwon , S. Lee , J. Kim .
        3. Kwon, O., Lee, S., Kim, J., et al: ‘Collision prediction at intersection in sensor network environment’. Proc. IEEE Intelligent Transportation Systems Conf., 2006.
        . Proc. IEEE Intelligent Transportation Systems Conf.
    4. 4)
      • E. Dabbour , S. Easa .
        4. Dabbour, E., Easa, S.: ‘Perceptual framework for a modern left-turn collision warning system’, Int. J. Appl. Sci., Eng. Technol., 2009, 5, (1), pp. 814.
        . Int. J. Appl. Sci., Eng. Technol. , 1 , 8 - 14
    5. 5)
      • E. Dabbour , S. Easa .
        5. Dabbour, E., Easa, S.: ‘Proposed collision warning system for right-turning vehicles at two-way stop-controlled rural intersections’. Proc. IEEE Intelligent Vehicle Symp., 2009, pp. 929934.
        . Proc. IEEE Intelligent Vehicle Symp. , 929 - 934
    6. 6)
      • C. Huang , S. Lin .
        6. Huang, C., Lin, S.: ‘An early warning algorithm for vehicles based on V2V communication’, Int. J. Commun. Syst., 2012, 25, pp. 779795.
        . Int. J. Commun. Syst. , 779 - 795
    7. 7)
      • E. Wenjuan .
        7. Wenjuan, E.: ‘Research on vehicle conflict detection and resolution algorithm at unsignalized intersection’. Dissertation of Doctor of Philosophy. University of Jilin, 2012.
        .
    8. 8)
      • C. Chan , D. Marco , J. Misener .
        8. Chan, C., Marco, D., Misener, J.: ‘Threat assessment of traffic moving toward a controlled intersection’. Proc. IEEE Intelligent Vehicles Symp., 2004, pp. 931936.
        . Proc. IEEE Intelligent Vehicles Symp. , 931 - 936
    9. 9)
      • F. Salim , S. Loke , A. Rakotonirainy .
        9. Salim, F., Loke, S., Rakotonirainy, A., et al: ‘Collision pattern modeling and real-time collision detection at road intersections’. Proc. Intelligent Transportation Systems Conf., 2009, pp. 161166.
        . Proc. Intelligent Transportation Systems Conf. , 161 - 166
    10. 10)
      • T. Zhu , J. Xu , Y. Bai .
        10. Zhu, T., Xu, J., Bai, Y., et al: ‘A research on risk assessment and warning strategy for intersection collision avoidance system’. Proc. IEEE Intelligent Transportation Systems, 2009, pp. 16.
        . Proc. IEEE Intelligent Transportation Systems , 1 - 6
    11. 11)
      • G. Weidl , G. Breuel , V. Singhal .
        11. Weidl, G., Breuel, G., Singhal, V.: ‘Collision risk prediction and warning at road intersections using an object oriented Bayesian network’. Proc. 5th Int. Conf. on Automotive User Interfaces and Interactive Vehicular Applications, 2013, pp. 270277.
        . Proc. 5th Int. Conf. on Automotive User Interfaces and Interactive Vehicular Applications , 270 - 277
    12. 12)
      • A. Tang , A. Yip .
        12. Tang, A., Yip, A.: ‘Collision avoidance timing analysis of DSRC-based vehicles’, Accid. Anal. Prev., 2010, 42, pp. 182195.
        . Accid. Anal. Prev. , 182 - 195
    13. 13)
      • M. Green .
        13. Green, M.: ‘How long does it take to stop? Methodological analysis of driver perception-brake times’, Transp. Hum. Factors, 2000, 2, pp. 195216.
        . Transp. Hum. Factors , 195 - 216
    14. 14)
      • J. Du .
        14. Du, J.: ‘Study about vehicle safety distance based on vehicle to vehicle communication’. Master thesis, Wuhan University of Technology, China, 2012.
        .
    15. 15)
      • J. Ward , G. Agamennoni , S. Worrall .
        15. Ward, J., Agamennoni, G., Worrall, S., et al: ‘Extending time to collision for probabilistic reasoning in general traffic scenarios’, Transp. Res. C, Emerg. Technol., 2015, 51, pp. 6682.
        . Transp. Res. C, Emerg. Technol. , 66 - 82
    16. 16)
      • 16. The Highway Code: ‘Rule 126’, Gov.uk.
        .
    17. 17)
      • 17. Iowa FACE Report: ‘Diesel mechanic died in motor vehicle crash caused by distracted driving’, case ID: 2012 IA 041.
        .
    18. 18)
      • S. Atev , H. Arumugam , O. Masoud .
        18. Atev, S., Arumugam, H., Masoud, O., et al: ‘A vision-based approach to collision prediction at traffic intersections’, IEEE Trans. Intell. Transp. Syst., 2005, 6, (4), pp. 416423.
        . IEEE Trans. Intell. Transp. Syst. , 4 , 416 - 423
    19. 19)
      • P. Wang , J. Wang , C. Chan .
        19. Wang, P., Wang, J., Chan, C., et al: ‘Trajectory prediction for turning vehicles at intersections by fusing vehicle dynamics and driver's future input estimation’, Transp. Res. Rec., 2016, 2602, pp. 6877.
        . Transp. Res. Rec. , 68 - 77
    20. 20)
      • S. Shladover , S. Tan .
        20. Shladover, S., Tan, S.: ‘Analysis of vehicle positioning accuracy requirements for communication-based cooperative collision warning’, J. Intell. Transp. Syst.: Tech. Plann. Oper., 2006, 10, (3), pp. 131140.
        . J. Intell. Transp. Syst.: Tech. Plann. Oper. , 3 , 131 - 140
    21. 21)
      • H. Tan , J. Huang .
        21. Tan, H., Huang, J.: ‘DGPS-based vehicle-to-vehicle cooperative collision warning: engineering feasibility viewpoints’, IEEE Trans. Intell. Transp. Syst., 2006, 7, (4), pp. 415428.
        . IEEE Trans. Intell. Transp. Syst. , 4 , 415 - 428
    22. 22)
      • J. Liu , B. Cai , Y. Wang .
        22. Liu, J., Cai, B., Wang, Y., et al: ‘A lane level positioning-based cooperative vehicle conflict resolution algorithm for unsignalized intersection collisions’, Comput. Electr. Eng., 2013, 39, pp. 13811389.
        . Comput. Electr. Eng. , 1381 - 1389
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0065
Loading

Related content

content/journals/10.1049/iet-its.2017.0065
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address