http://iet.metastore.ingenta.com
1887

Comparing the effects of ramp metering and variable speed limit on reducing travel time and crash risk at bottlenecks

Comparing the effects of ramp metering and variable speed limit on reducing travel time and crash risk at bottlenecks

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Ramp metering (RM) and variable speed limits (VSLs) affect freeway traffic in different ways and, accordingly, result in different effects on travel time and crash risk. This study compared the effects of RM and VSL at different freeway bottleneck segments with various traffic demands. An isolated merge bottleneck segment was examined, and then extended to consider closely spaced upstream ramps and downstream diverge bottleneck. Two control strategies were tested which were the Asservissement LINéaire d'Entrée Autoroutiére (ALINEA)/Q and feedback-based VSL. The reductions of travel time and crash risk were evaluated using the modified cell transmission models. The results showed that ALINEA/Q was more stable than the feedback VSL, but its power was limited by ramp space. A coordinated RM and VSL strategies were proposed to improve the control effects. The authors also evaluated how traffic demand features on mainline and ramps affected the control effects. The results highlighted the importance of consideration of geometrical features and traffic demands on freeways when selecting the best control strategy.

References

    1. 1)
      • 1. Leclercq, L., Laval, J.A., Chiabaut, N.: ‘Capacity drops at merges: an endogenous model’, Procedia, Soc. Behav. Sci., 2011, 17, pp. 1226.
    2. 2)
      • 2. Muñoz, J.C., Daganzo, C.F.: ‘The bottleneck mechanism of a freeway diverge’, Transp. Res. A, Policy Pract., 2002, 36, (6), pp. 483505.
    3. 3)
      • 3. Cassidy, M.J.: ‘Freeway on-ramp metering, delay savings, and diverge bottleneck’, Transp. Res. Rec., 2003, 1856, pp. 15.
    4. 4)
      • 4. Chung, K., Rudjanakanoknad, J., Cassidy, M.J.: ‘Relation between traffic density and capacity drop at three freeway bottlenecks’, Transp. Res. B, Methodol., 2007, 41, (1), pp. 8295.
    5. 5)
      • 5. Qu, X., Zhang, J., Wang, S.: ‘On the stochastic fundamental diagram for freeway traffic: model development, analytical properties, validation, and extensive applications’, Transp. Res. B, 2017, 104, pp. 256271.
    6. 6)
      • 6. Cassidy, M.J., Rudjanakanoknad, J.: ‘Increasing the capacity of an isolated merge by metering its on-ramp’, Transp. Res. B, Methodol., 2005, 39, (10), pp. 896913.
    7. 7)
      • 7. Papageorgiou, M., Haj-Salem, H., Blosseville, J.M.: ‘ALINEA: a local feedback control law for on-ramp metering’, Transp. Res. Rec., 1991, 1320, pp. 5864.
    8. 8)
      • 8. Papageorgiou, M., Kotsialos, A.: ‘Freeway ramp metering: an overview’, IEEE Trans. Intell. Transp. Syst., 2002, 3, (4), pp. 271281.
    9. 9)
      • 9. Smaragdis, E., Papageorgiou, M.: ‘Series of new local ramp metering strategies’, Transp. Res. Rec., 2003, 1856, pp. 7486.
    10. 10)
      • 10. Zhang, G., Wang, Y.: ‘Optimizing coordinated ramp metering: a preemptive hierarchical control approach’, Comput.-Aided Civ. Infrastruct. Eng., 2013, 28, (1), pp. 2237.
    11. 11)
      • 11. Hegyi, A., De Schutter, B., Hellendoorn, J.: ‘Optimal coordination of variable speed limits to suppress shock waves’, IEEE Trans. Intell. Transp. Syst., 2005, 6, (1), pp. 102112.
    12. 12)
      • 12. Papageorgiou, M., Kosmatopoulos, E., Papamichail, I.: ‘Effects of variable speed limits on motorway traffic flow’, Transp. Res. Rec., 2008a, 2047, pp. 3748.
    13. 13)
      • 13. Hadiuzzaman, M., Fang, J., Lan, C., et al: ‘Impact of mainline demand levels and control parameters on multi-objective optimization involving proactive optimal VSL control’. Presented at 93rd Annual Meeting of the Transportation Research Board, Washington, DC, 2014.
    14. 14)
      • 14. Jonkers, E., Wilmink, I.R., Stoelhorst, H.J., et al: ‘Results of field trials with dynamic speed limits in The Netherlands: improving throughput and safety on the A12 freeway’. Proc. 14th IEEE Conf. Intelligent Transportation Systems, Washington, DC, 2011.
    15. 15)
      • 15. Carlson, R.C., Papamichail, I., Papageorgiou, M., et al: ‘Optimal motorway traffic flow control involving variable speed limits and ramp metering’, Transp. Sci., 2010, 44, (22), pp. 238253.
    16. 16)
      • 16. Carlson, R.C., Papamichail, I., Papageorgiou, M., et al: ‘Optimal mainstream traffic flow control of large-scale motorway networks’, Transp. Res. C, Emerg. Technol., 2010, 18, (2), pp. 193212.
    17. 17)
      • 17. Carlson, R.C., Papamichail, I., Papageorgiou, M.: ‘Local feedback-based mainstream traffic flow control on motorways using variable speed limits’, IEEE Trans. Intell. Transp. Syst., 2011, 12, (4), pp. 12611276.
    18. 18)
      • 18. Haleem, K., Abdel-Aty, M.: ‘Safety investigation of combining ramp metering and variable speed limits strategies on urban freeways: a simulation study (no. 17-01045)’, 2017.
    19. 19)
      • 19. Kan, Y., Wang, Y., Papageorgiou, M., et al: ‘Local ramp metering with distant downstream bottlenecks: a comparative study’, Transp. Res. C, Emerg. Technol., 2016, 62, pp. 149170.
    20. 20)
      • 20. Han, Y., Hegyi, A., Yuan, Y., et al: ‘Resolving freeway jam waves by discrete first-order model-based predictive control of variable speed limits’, Transp. Res. C, Emerg. Technol., 2017, 77, pp. 405420.
    21. 21)
      • 21. Goatin, P., Göttlich, S., Kolb, O.: ‘Speed limit and ramp meter control for traffic flow networks’, Eng. Optim., 2016, 48, (7), pp. 11211144.
    22. 22)
      • 22. Zhou, M., Qu, X., Jin, S.: ‘On the impact of cooperative autonomous vehicles in improving freeway merging: a modified intelligent driver model based approach’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (6), pp. 14221428.
    23. 23)
      • 23. Lu, X.Y., Varaiya, P., Horowitz, R., et al: ‘A novel freeway traffic control with variable speed limit and coordinated ramp metering’, Transp. Res. Rec., 2012, 2229, pp. 5565.
    24. 24)
      • 24. Kotsialos, A., Papageorgiou, M., Mangeas, M., et al: ‘Coordinated and integrated control of motorway networks via non-linear optimal control’, Transp. Res. C, Emerg. Technol., 2002, 10, (1), pp. 6584.
    25. 25)
      • 25. Carlson, R.C., Papamichail, I., Papageorgiou, M.: ‘Integrated feedback ramp metering and mainstream traffic flow control on motorways using variable speed limits’, Transp. Res. C, Emerg. Technol., 2014, 46, pp. 209221.
    26. 26)
      • 26. Lee, C., Hellinga, B., Saccomanno, F.: ‘Evaluation of variable speed limits to improve traffic safety’, Transp. Res. C, Emerg. Technol., 2006, 14, (3), pp. 213228.
    27. 27)
      • 27. Yu, R., Abdel-Aty, M.: ‘An optimal variable speed limits system to ameliorate traffic safety risk’. Presented at the 93rd Annual Meeting of the Transportation Research Board, Washington, DC, 2014.
    28. 28)
      • 28. Zhou, M., Qu, X., Li, X.: ‘A recurrent neural network based microscopic car following model to predict traffic oscillation’, Transp. Res. C, 2017, 84, pp. 245264.
    29. 29)
      • 29. Daganzo, C.F.: ‘The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory’, Transp. Res. B, Methodol., 1994, 28, (4), pp. 269287.
    30. 30)
      • 30. Dixit, V., Ramasamy, S., Radwan, E.: ‘Assessment of I-4 contraflow plans: microscopic versus mesoscopic simulation’, Transp. Res. Rec., J. Transp. Res. Board, 2008, 2041, pp. 8997.
    31. 31)
      • 31. Chiou, Y.C., Huang, Y.F., Lin, P.C.: ‘Optimal variable speed-limit control under abnormal traffic conditions’, J. Chin. Inst. Eng., 2012, 35, (3), pp. 299308.
    32. 32)
      • 32. Gomes, G., Horowitz, R., Kurzhanskiy, A.A.: ‘Behavior of the cell transmission model and effectiveness of ramp metering’, Transp. Res. C, Emerg. Technol., 2008, 16, (4), pp. 485513.
    33. 33)
      • 33. Muñoz, L., Sun, X., Horowitz, R., et al: ‘Piecewise-linearized cell transmission model and parameter calibration methodology’, Transp. Res. Rec., 2006, 1965, pp. 183191.
    34. 34)
      • 34. Qu, X., Wang, S., Zhang, J.: ‘On the fundamental diagram for freeway traffic: a novel calibration approach for single-regime models’, Transp. Res. B, 2015, 73, pp. 91102.
    35. 35)
      • 35. Hadiuzzaman, M.D., Qiu, T.Z.: ‘Cell transmission model based variable speed limit control for freeways’, Can. J. Civ. Eng., 2013, 40, (1), pp. 4656.
    36. 36)
      • 36. Li, Z., Liu, P., Wang, W., et al: ‘Development of a control strategy of variable speed limits to reduce rear-end collision risks near freeway recurrent bottlenecks’, IEEE Trans. Intell. Transp. Syst., 2014b, 15, (2), pp. 866877.
    37. 37)
      • 37. Li, Z., Liu, P., Xu, C., et al: ‘Optimal mainline variable speed limit control to improve safety on large-scale freeway segments’, Comput.-Aided Civ. Infrastruct. Eng., 2015, 31, (5), pp. 366380.
    38. 38)
      • 38. Li, Z., Liu, P., Xu, C., et al: ‘Reinforcement learning-based variable speed limit control strategy to reduce traffic congestion at freeway recurrent bottlenecks’, IEEE Trans. Intell. Transp. Syst., 2017, PP, (99), pp. 114.
    39. 39)
      • 39. Kuang, Y., Qu, X., Wang, S.: ‘A tree-structured crash surrogate measure for freeways’, Accident Anal. Prev., 2015, 77, pp. 137148.
    40. 40)
      • 40. Li, Z., Ahn, S., Chung, K., et al: ‘Surrogate safety measure for evaluating rear-end collision risk related to kinematic waves near freeway recurrent bottlenecks’, Accident Anal. Prev., 2014, 64, pp. 5261.
    41. 41)
      • 41. Kouvelas, A., Aboudolas, K., Kosmatopoulos, E., et al: ‘Adaptive performance optimization for large-scale traffic control systems’, IEEE Trans. Intell. Transp. Syst., 2011, 12, (4), pp. 14341445.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0064
Loading

Related content

content/journals/10.1049/iet-its.2017.0064
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address