Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Comparing the effects of ramp metering and variable speed limit on reducing travel time and crash risk at bottlenecks

Ramp metering (RM) and variable speed limits (VSLs) affect freeway traffic in different ways and, accordingly, result in different effects on travel time and crash risk. This study compared the effects of RM and VSL at different freeway bottleneck segments with various traffic demands. An isolated merge bottleneck segment was examined, and then extended to consider closely spaced upstream ramps and downstream diverge bottleneck. Two control strategies were tested which were the Asservissement LINéaire d'Entrée Autoroutiére (ALINEA)/Q and feedback-based VSL. The reductions of travel time and crash risk were evaluated using the modified cell transmission models. The results showed that ALINEA/Q was more stable than the feedback VSL, but its power was limited by ramp space. A coordinated RM and VSL strategies were proposed to improve the control effects. The authors also evaluated how traffic demand features on mainline and ramps affected the control effects. The results highlighted the importance of consideration of geometrical features and traffic demands on freeways when selecting the best control strategy.

References

    1. 1)
      • 25. Carlson, R.C., Papamichail, I., Papageorgiou, M.: ‘Integrated feedback ramp metering and mainstream traffic flow control on motorways using variable speed limits’, Transp. Res. C, Emerg. Technol., 2014, 46, pp. 209221.
    2. 2)
      • 8. Papageorgiou, M., Kotsialos, A.: ‘Freeway ramp metering: an overview’, IEEE Trans. Intell. Transp. Syst., 2002, 3, (4), pp. 271281.
    3. 3)
      • 9. Smaragdis, E., Papageorgiou, M.: ‘Series of new local ramp metering strategies’, Transp. Res. Rec., 2003, 1856, pp. 7486.
    4. 4)
      • 17. Carlson, R.C., Papamichail, I., Papageorgiou, M.: ‘Local feedback-based mainstream traffic flow control on motorways using variable speed limits’, IEEE Trans. Intell. Transp. Syst., 2011, 12, (4), pp. 12611276.
    5. 5)
      • 15. Carlson, R.C., Papamichail, I., Papageorgiou, M., et al: ‘Optimal motorway traffic flow control involving variable speed limits and ramp metering’, Transp. Sci., 2010, 44, (22), pp. 238253.
    6. 6)
      • 10. Zhang, G., Wang, Y.: ‘Optimizing coordinated ramp metering: a preemptive hierarchical control approach’, Comput.-Aided Civ. Infrastruct. Eng., 2013, 28, (1), pp. 2237.
    7. 7)
      • 3. Cassidy, M.J.: ‘Freeway on-ramp metering, delay savings, and diverge bottleneck’, Transp. Res. Rec., 2003, 1856, pp. 15.
    8. 8)
      • 7. Papageorgiou, M., Haj-Salem, H., Blosseville, J.M.: ‘ALINEA: a local feedback control law for on-ramp metering’, Transp. Res. Rec., 1991, 1320, pp. 5864.
    9. 9)
      • 32. Gomes, G., Horowitz, R., Kurzhanskiy, A.A.: ‘Behavior of the cell transmission model and effectiveness of ramp metering’, Transp. Res. C, Emerg. Technol., 2008, 16, (4), pp. 485513.
    10. 10)
      • 38. Li, Z., Liu, P., Xu, C., et al: ‘Reinforcement learning-based variable speed limit control strategy to reduce traffic congestion at freeway recurrent bottlenecks’, IEEE Trans. Intell. Transp. Syst., 2017, PP, (99), pp. 114.
    11. 11)
      • 23. Lu, X.Y., Varaiya, P., Horowitz, R., et al: ‘A novel freeway traffic control with variable speed limit and coordinated ramp metering’, Transp. Res. Rec., 2012, 2229, pp. 5565.
    12. 12)
      • 14. Jonkers, E., Wilmink, I.R., Stoelhorst, H.J., et al: ‘Results of field trials with dynamic speed limits in The Netherlands: improving throughput and safety on the A12 freeway’. Proc. 14th IEEE Conf. Intelligent Transportation Systems, Washington, DC, 2011.
    13. 13)
      • 39. Kuang, Y., Qu, X., Wang, S.: ‘A tree-structured crash surrogate measure for freeways’, Accident Anal. Prev., 2015, 77, pp. 137148.
    14. 14)
      • 2. Muñoz, J.C., Daganzo, C.F.: ‘The bottleneck mechanism of a freeway diverge’, Transp. Res. A, Policy Pract., 2002, 36, (6), pp. 483505.
    15. 15)
      • 21. Goatin, P., Göttlich, S., Kolb, O.: ‘Speed limit and ramp meter control for traffic flow networks’, Eng. Optim., 2016, 48, (7), pp. 11211144.
    16. 16)
      • 28. Zhou, M., Qu, X., Li, X.: ‘A recurrent neural network based microscopic car following model to predict traffic oscillation’, Transp. Res. C, 2017, 84, pp. 245264.
    17. 17)
      • 4. Chung, K., Rudjanakanoknad, J., Cassidy, M.J.: ‘Relation between traffic density and capacity drop at three freeway bottlenecks’, Transp. Res. B, Methodol., 2007, 41, (1), pp. 8295.
    18. 18)
      • 37. Li, Z., Liu, P., Xu, C., et al: ‘Optimal mainline variable speed limit control to improve safety on large-scale freeway segments’, Comput.-Aided Civ. Infrastruct. Eng., 2015, 31, (5), pp. 366380.
    19. 19)
      • 34. Qu, X., Wang, S., Zhang, J.: ‘On the fundamental diagram for freeway traffic: a novel calibration approach for single-regime models’, Transp. Res. B, 2015, 73, pp. 91102.
    20. 20)
      • 29. Daganzo, C.F.: ‘The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory’, Transp. Res. B, Methodol., 1994, 28, (4), pp. 269287.
    21. 21)
      • 41. Kouvelas, A., Aboudolas, K., Kosmatopoulos, E., et al: ‘Adaptive performance optimization for large-scale traffic control systems’, IEEE Trans. Intell. Transp. Syst., 2011, 12, (4), pp. 14341445.
    22. 22)
      • 24. Kotsialos, A., Papageorgiou, M., Mangeas, M., et al: ‘Coordinated and integrated control of motorway networks via non-linear optimal control’, Transp. Res. C, Emerg. Technol., 2002, 10, (1), pp. 6584.
    23. 23)
      • 20. Han, Y., Hegyi, A., Yuan, Y., et al: ‘Resolving freeway jam waves by discrete first-order model-based predictive control of variable speed limits’, Transp. Res. C, Emerg. Technol., 2017, 77, pp. 405420.
    24. 24)
      • 13. Hadiuzzaman, M., Fang, J., Lan, C., et al: ‘Impact of mainline demand levels and control parameters on multi-objective optimization involving proactive optimal VSL control’. Presented at 93rd Annual Meeting of the Transportation Research Board, Washington, DC, 2014.
    25. 25)
      • 33. Muñoz, L., Sun, X., Horowitz, R., et al: ‘Piecewise-linearized cell transmission model and parameter calibration methodology’, Transp. Res. Rec., 2006, 1965, pp. 183191.
    26. 26)
      • 35. Hadiuzzaman, M.D., Qiu, T.Z.: ‘Cell transmission model based variable speed limit control for freeways’, Can. J. Civ. Eng., 2013, 40, (1), pp. 4656.
    27. 27)
      • 27. Yu, R., Abdel-Aty, M.: ‘An optimal variable speed limits system to ameliorate traffic safety risk’. Presented at the 93rd Annual Meeting of the Transportation Research Board, Washington, DC, 2014.
    28. 28)
      • 18. Haleem, K., Abdel-Aty, M.: ‘Safety investigation of combining ramp metering and variable speed limits strategies on urban freeways: a simulation study (no. 17-01045)’, 2017.
    29. 29)
      • 30. Dixit, V., Ramasamy, S., Radwan, E.: ‘Assessment of I-4 contraflow plans: microscopic versus mesoscopic simulation’, Transp. Res. Rec., J. Transp. Res. Board, 2008, 2041, pp. 8997.
    30. 30)
      • 11. Hegyi, A., De Schutter, B., Hellendoorn, J.: ‘Optimal coordination of variable speed limits to suppress shock waves’, IEEE Trans. Intell. Transp. Syst., 2005, 6, (1), pp. 102112.
    31. 31)
      • 26. Lee, C., Hellinga, B., Saccomanno, F.: ‘Evaluation of variable speed limits to improve traffic safety’, Transp. Res. C, Emerg. Technol., 2006, 14, (3), pp. 213228.
    32. 32)
      • 31. Chiou, Y.C., Huang, Y.F., Lin, P.C.: ‘Optimal variable speed-limit control under abnormal traffic conditions’, J. Chin. Inst. Eng., 2012, 35, (3), pp. 299308.
    33. 33)
      • 16. Carlson, R.C., Papamichail, I., Papageorgiou, M., et al: ‘Optimal mainstream traffic flow control of large-scale motorway networks’, Transp. Res. C, Emerg. Technol., 2010, 18, (2), pp. 193212.
    34. 34)
      • 1. Leclercq, L., Laval, J.A., Chiabaut, N.: ‘Capacity drops at merges: an endogenous model’, Procedia, Soc. Behav. Sci., 2011, 17, pp. 1226.
    35. 35)
      • 22. Zhou, M., Qu, X., Jin, S.: ‘On the impact of cooperative autonomous vehicles in improving freeway merging: a modified intelligent driver model based approach’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (6), pp. 14221428.
    36. 36)
      • 19. Kan, Y., Wang, Y., Papageorgiou, M., et al: ‘Local ramp metering with distant downstream bottlenecks: a comparative study’, Transp. Res. C, Emerg. Technol., 2016, 62, pp. 149170.
    37. 37)
      • 12. Papageorgiou, M., Kosmatopoulos, E., Papamichail, I.: ‘Effects of variable speed limits on motorway traffic flow’, Transp. Res. Rec., 2008a, 2047, pp. 3748.
    38. 38)
      • 36. Li, Z., Liu, P., Wang, W., et al: ‘Development of a control strategy of variable speed limits to reduce rear-end collision risks near freeway recurrent bottlenecks’, IEEE Trans. Intell. Transp. Syst., 2014b, 15, (2), pp. 866877.
    39. 39)
      • 6. Cassidy, M.J., Rudjanakanoknad, J.: ‘Increasing the capacity of an isolated merge by metering its on-ramp’, Transp. Res. B, Methodol., 2005, 39, (10), pp. 896913.
    40. 40)
      • 5. Qu, X., Zhang, J., Wang, S.: ‘On the stochastic fundamental diagram for freeway traffic: model development, analytical properties, validation, and extensive applications’, Transp. Res. B, 2017, 104, pp. 256271.
    41. 41)
      • 40. Li, Z., Ahn, S., Chung, K., et al: ‘Surrogate safety measure for evaluating rear-end collision risk related to kinematic waves near freeway recurrent bottlenecks’, Accident Anal. Prev., 2014, 64, pp. 5261.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0064
Loading

Related content

content/journals/10.1049/iet-its.2017.0064
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address