http://iet.metastore.ingenta.com
1887

Feature selection-based approach for urban short-term travel speed prediction

Feature selection-based approach for urban short-term travel speed prediction

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposes a feature selection-based approach to identify reasonable spatial–temporal traffic patterns related to the target link, in order to improve the online-prediction performance. The prediction task is composed of two steps: one hybrid intelligent algorithm-based feature selector (FS) is proposed to optimise original state vectors, which are designed empirically during the offline process and optimised state vectors are employed to carry out the online prediction. Numerical experiments by three non-parametric algorithms are conducted with taxis’ global positioning system data in an urban road network of Changsha, China. It is concluded that: (i) under optimised state vectors, the prediction accuracies improve or almost maintain the same; (ii) K-nearest neighbour (KNN) with the simplest state vectors obtains the greatest improvement of prediction performance; (iii) although the performance improvement of ɛ-support vector regression is limited with optimised state vectors, it always outperforms backward-propagation neural network and KNN; and (iv) three non-parametric approaches with optimised state vectors outperform auto-regressive integrated moving average in relatively longer prediction horizons. In conclusion, such FS-based approach is able to improve or guarantee the prediction performance under the remarkably reduced model complexity, and is a promising methodology for short-term traffic prediction.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0059
Loading

Related content

content/journals/10.1049/iet-its.2017.0059
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address