http://iet.metastore.ingenta.com
1887

Feature selection-based approach for urban short-term travel speed prediction

Feature selection-based approach for urban short-term travel speed prediction

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposes a feature selection-based approach to identify reasonable spatial–temporal traffic patterns related to the target link, in order to improve the online-prediction performance. The prediction task is composed of two steps: one hybrid intelligent algorithm-based feature selector (FS) is proposed to optimise original state vectors, which are designed empirically during the offline process and optimised state vectors are employed to carry out the online prediction. Numerical experiments by three non-parametric algorithms are conducted with taxis’ global positioning system data in an urban road network of Changsha, China. It is concluded that: (i) under optimised state vectors, the prediction accuracies improve or almost maintain the same; (ii) K-nearest neighbour (KNN) with the simplest state vectors obtains the greatest improvement of prediction performance; (iii) although the performance improvement of ɛ-support vector regression is limited with optimised state vectors, it always outperforms backward-propagation neural network and KNN; and (iv) three non-parametric approaches with optimised state vectors outperform auto-regressive integrated moving average in relatively longer prediction horizons. In conclusion, such FS-based approach is able to improve or guarantee the prediction performance under the remarkably reduced model complexity, and is a promising methodology for short-term traffic prediction.

References

    1. 1)
      • 1. Vlahogianni, E.I., Karlaftis, M.G., Golias, J.C.: ‘Short-term traffic forecasting: where we are and where we're going’, Transp. Res. C, Emerg. Technol., 2014, 43, pp. 319.
    2. 2)
      • 2. Chen, C., Wang, Y., Li, L., et al: ‘The retrieval of intra-day trend and its influence on traffic prediction’, Transp. Res. C, Emerg. Technol., 2012, 22, pp. 103118.
    3. 3)
      • 3. Haworth, J., Cheng, T.: ‘Non-parametric regression for space–time forecasting under missing data’, Comput. Environ. Urban Syst., 2012, 36, (6), pp. 538550.
    4. 4)
      • 4. Kamarianakis, Y., Shen, W., Wynter, L.: ‘Real-time road traffic forecasting using regime-switching space–time models and adaptive LASSO’, Appl. Stoch. Models Bus. Ind., 2012, 28, (4), pp. 297315.
    5. 5)
      • 5. Du, L., Peeta, S., Kim, Y.H.: ‘An adaptive information fusion model to predict the short-term link travel time distribution in dynamic traffic networks’, Transp. Res. B, Methodol., 2012, 46, (1), pp. 235252.
    6. 6)
      • 6. Sun, S., Huang, R., Gao, Y.: ‘Network-scale traffic modeling and forecasting with graphical lasso and neural networks’, J. Transp. Eng., 2012, 138, (11), pp. 13581367.
    7. 7)
      • 7. Yildirim, U., Çataltepe, Z.: ‘Short time traffic speed prediction using data from a number of different sensor locations’.  23rd Int. Symp. Computer and Information Sciences ISCIS'08, 2008, pp. 16.
    8. 8)
      • 8. Chandra, S.R., Al-Deek, H.: ‘Predictions of freeway traffic speeds and volumes using vector autoregressive models’, J. Intell. Transp. Syst., 2009, 13, (2), pp. 5372.
    9. 9)
      • 9. Kamarianakis, Y., Gao, H., Prastacos, P.: ‘Characterizing regimes in daily cycles of urban traffic using smooth-transition regressions’, Transp. Res. C, Emerg. Technol., 2010, 18, (5), pp. 821840.
    10. 10)
      • 10. Wu, S., Yang, Z., Zhu, X., et al: ‘Improved k-NN for short-term traffic forecasting using temporal and spatial information’, J. Transp. Eng., 2014, 140, (7), pp. 4660.
    11. 11)
      • 11. Stathopoulos, A., Karlaftis, M.G.: ‘A multivariate state-space approach for urban traffic flow modeling and prediction’, Transp. Res. C, Emerg. Technol., 2003, 11, (2), pp. 121135.
    12. 12)
      • 12. Turochy, R.: ‘Enhancing short-term traffic forecasting with traffic condition information’, J. Transp. Eng., 2006, 132, (6), pp. 469474.
    13. 13)
      • 13. Zou, N., Wang, J., Chang, G.L., et al: ‘Field test of a travel-time prediction system with widely spaced detectors transportation research record’, J. Transp. Res. Rec. Board, 2009, 2129, (1), pp. 6272.
    14. 14)
      • 14. Wang, J., Shang, P., Zhao, X.: ‘A new traffic speed forecasting method based on bi-pattern recognition’, Fluct. Noise Lett., 2011, 10, (1), pp. 5975.
    15. 15)
      • 15. Oh, C., Park, S.: ‘Investigating the effects of daily travel time patterns on short-term prediction’, Korean Soc. Civ. Eng. J. Civ. Eng., 2011, 15, (7), pp. 12631272.
    16. 16)
      • 16. Cai, P., Wang, Y., Lu, G., et al: ‘A spatiotemporal correlative k-nearest neighbor model for short-term traffic multistep forecasting’, Transp. Res. C, Emerg. Technol., 2016, 62, pp. 2134.
    17. 17)
      • 17. Li, L., Su, X., Wang, Y., et al: ‘Robust causal dependence mining in big data network and its application to traffic flow predictions’, Transp. Res. C, Emerg. Technol., 2015, 58, pp. 292307.
    18. 18)
      • 18. Lv, Y., Duan, Y., Kang, W., et al: ‘Traffic flow prediction with big data: a deep learning approach’, IEEE Trans. Intell. Transp. Syst., 2015, 16, pp. 865873.
    19. 19)
      • 19. Fusco, G., Colombaroni, C., Isaenko, N.: ‘Short-term speed predictions exploiting big data on large urban road networks’, Transp. Res. C, Emerg. Technol., 2016, 73, pp. 183201.
    20. 20)
      • 20. Fusco, G., Colombaroni, C., Isaenko, N.: ‘Comparative analysis of implicit models for real-time short-term traffic predictions’, IET Intell. Transp. Syst., 2016, 10, (4), pp. 270278.
    21. 21)
      • 21. Griffith, D.A.: ‘Modeling spatio-temporal relationships: retrospect and prospect’, J. Geogr. Syst., 2010, 12, (2), pp. 111123.
    22. 22)
      • 22. Kamarianakis, Y., Prastacos, P.: ‘Space–time modeling of traffic flow’, Comput. Geosci., 2005, 31, (2), pp. 119133.
    23. 23)
      • 23. Mai, T., Ghosh, B., Wilson, S.: ‘Short-term traffic-flow forecasting with auto-regressive moving average models’. Proc. the Inst. Civil Eng. Transp., 2015, 167, (4), pp. 232239.
    24. 24)
      • 24. Zou, Y., Zhu, X., Zhang, Y., et al: ‘A space–time diurnal method for short-term freeway travel time prediction’, Transp. Res. C, Emerg. Technol., 2014, 43, pp. 3349.
    25. 25)
      • 25. Kohavi, R, John, G.H.: ‘Wrappers for feature subset selection’, Artif. Intell., 1997, 97, pp. 273324.
    26. 26)
      • 26. Hall, M.A., Smith, L.A.: ‘Feature subset selection: a correlation based filter approach’. Proc. Int. Conf. Neural Information Processing and Intelligent Information Systems, 1997, pp. 855888.
    27. 27)
      • 27. Jolliffe, T.: ‘Principal component analysis’. ACM Computing Surveys, 1986, pp. 147.
    28. 28)
      • 28. Calvo, B., Larrañaga, P., Lozano, J.A.: ‘Feature subset selection from positive and unlabelled examples’, Pattern Recognit. Lett., 2009, 30, pp. 10271036.
    29. 29)
      • 29. Uguz, H.: ‘A two-stage feature selection method for text categorization by using information gain, principal component analysis and genetic algorithm’, Knowl.-Based Syst., 2011, 24, pp. 10241032.
    30. 30)
      • 30. Rasyidi, M.A., Ryu, K.R.: ‘Short-term speed prediction on urban highways by ensemble learning with feature subset selection’. Proc. Int. Conf. Data Systems for Advanced Applications, 2014, PP. pp. 4660.
    31. 31)
      • 31. Pawlak, Z.: ‘Rough sets: theoretical aspects of reasoning about data’ (Kluwer Academic Publishing, Dordrecht, 1991).
    32. 32)
      • 32. Shannon, C.E.: ‘A mathematical theory of communication’, Bell Lab. Tech. J., 1948, 27, (4), pp. 623656.
    33. 33)
      • 33. Li, W.T.: ‘Mutual information functions versus correlation functions’, J. Stat. Phys., 1990, 60, pp. 823837.
    34. 34)
      • 34. Battiti, R.: ‘Using mutual information for selecting features in supervised neural net learning’, IEEE Trans. Neural Netw., 1994, 5, (4), pp. 537550.
    35. 35)
      • 35. Chow, T., Huang, D.: ‘Estimating optimal feature subsets using efficient estimation of high-dimensional mutual information’, IEEE Trans. Neural Netw., 2005, 6, (1), pp. 213224.
    36. 36)
      • 36. Cheng, T., Haworth, J., Wang, J.: ‘Spatio-temporal autocorrelation of road network data’, J. Geogr. Syst., 2012, 14, (4), pp. 389413.
    37. 37)
      • 37. Sun, Z., Wang, Y., Pan, J.: ‘Short-term traffic flow forecasting based on clustering and feature selection’. Proc. Int. Conf. Neural Networks, Hong Kong, 2008, pp. 577583.
    38. 38)
      • 38. Hosseini, S.H., Moshiri, B., Rahimi-Kian, A., et al: ‘Short-term traffic flow forecasting by mutual information and artificial neural networks’. Proc. Int. Conf. Industrial Technology, Athens, 2012, pp. 11361141.
    39. 39)
      • 39. Hosseini, S.H., Moshiri, B., Rahimi-Kian, A., et al: ‘Traffic speed prediction using mutual information’. Proc. Canadian Conf. Electrical and Computer Engineering, Montreal, 2012, pp. 14.
    40. 40)
      • 40. Yang, S.: ‘On feature selection for traffic congestion prediction’, Transp. Res. C, Emerg. Technol., 2013, 26, pp. 160169.
    41. 41)
      • 41. Affonso, C., Sassi, R.J., Ferreira, R.P.: ‘Traffic flow breakdown prediction using feature reduction through rough-neuro fuzzy networks’. Proc. Int. Conf. neural networks, San Jose, CA, USA, 2011, pp. 19431947.
    42. 42)
      • 42. Vlahogianni, E.I., Karlaftis, M.G.: ‘Fuzzy-entropy neural network freeway incident duration modeling with single and competing uncertainties’, Comput.-Aided Civ. Infrastruct. Eng., 2013, 28, pp. 420433.
    43. 43)
      • 43. Dong, N., Huang, H., Zheng, L.: ‘Support vector machine in crash prediction at the level of traffic analysis zones: assessing the spatial proximity effects’, Accid. Anal. Prev., 2014, 82, pp. 192198.
    44. 44)
      • 44. Shiau, Y., Tsai, C., Hung, Y., et al: ‘The application of data mining technology to build a forecasting model for classification of road traffic accidents’, Math. Probl. Eng., 2015, 170635, pp. 18.
    45. 45)
      • 45. Chen, X., Wei, Z., Liu, X., et al: ‘Spatiotemporal variable and parameter selection using sparse hybrid genetic algorithm for traffic flow forecasting’, Int. J. Distrib. Sens. Netw., 2017, 13, (6), p. 1550147717713376.
    46. 46)
      • 46. Salvo, G., Amato, G., Zito, P.: ‘Bus speed estimation by neural networks to improve the automatic fleet management’, Eur. Transp., 2007, 51, (37), pp. 93104.
    47. 47)
      • 47. Poomrittigul, S., Pan-ngum, S., Phiu-Nual, K., et al: ‘Mean travel speed estimation using GPS data without ID number on inner city road’. Proc. Int. Conf. ITS Telecommunications, 2008, pp. 5661.
    48. 48)
      • 48. Ye, Q., Szeto, W.Y., Wong, S.C.: ‘Short-term traffic speed forecasting based on data recorded at irregular intervals’, IEEE Trans. Intell. Transp. Syst., 2012, 13, (4), pp. 17271737.
    49. 49)
      • 49. Julio, N., Giesen, R., Lizana, P.: ‘Real-time prediction of bus travel speeds using traffic shockwaves and machine learning algorithms’, Res. Transp. Econ., 2016, 59, pp. 250257.
    50. 50)
      • 50. Yao, B., Chen, C., Cao, Q., et al: ‘Short-term traffic speed prediction for an urban corridor’, Comput.-Aided Civ. Infrastruct. Eng., 2017, 32, (2), pp. 154169.
    51. 51)
      • 51. Clark, S.: ‘Traffic prediction using multivariate nonparametric regression’, J. Transp. Eng., 2003, 129, (2), pp. 161168.
    52. 52)
      • 52. Richards, P.I.: ‘Shock waves on the highway’, Oper. Res., 1956, 4, (1), pp. 4251.
    53. 53)
      • 53. Yun, S., Namkoong, S., Rho, J., et al: ‘A performance evaluation of neural network models in traffic volume forecasting’, Math. Comput. Model., 1998, 27, (2), pp. 293310.
    54. 54)
      • 54. Vapnik, V., Lerner, A.: ‘Pattern recognition using generalized portrait method’, Autom. Remote Control, 1963, 24, pp. 774780.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0059
Loading

Related content

content/journals/10.1049/iet-its.2017.0059
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address