http://iet.metastore.ingenta.com
1887

Automatic classification of traffic incident's severity using machine learning approaches

Automatic classification of traffic incident's severity using machine learning approaches

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

During daily work at a Transport Management Centre (TMC), the operators have to record and process a large volume of traffic information especially incident records. Their tasks involve manual classification of the data and then decide appropriate operations to clear the incidents on time. A real-time automatic decision support system can minimise an operator's responded time and hence reduce congestion. Besides standard descriptions (e.g. incident location, date, time, lanes affected), severity is an important criteria that operators have to evaluate based on all available information before any control commands can be issued. The NSW TMC and the research organisation Data61 in Sydney have collaborated to discover and visualise frequent patterns in historical incident response records, leading to the automatic classification of severity levels among past incidents using advanced machine learning, active learning and outlier detection techniques. The experiments were executed using 4 years TMC's incident logs from 2011 to 2014 which includes >40,000 records. The classification model achieved nearly 90% accuracy in five-fold cross-validation and is expected to help the TMC to improve its procedures, response plans, and resource allocations.

References

    1. 1)
      • R. Taib , D. Yee , F. Fang .
        1. Taib, R., Yee, D., Fang, F., et al: ‘Improved incident management through anomaly detection in historical records’. Proc. of the 21th ITS World Congress, Detroit, USA, 2014, pp. 1123.
        . Proc. of the 21th ITS World Congress , 11 - 23
    2. 2)
      • M. Nowakowska .
        2. Nowakowska, M.: ‘Logistic models in crash severity classification based on road characteristics’. Transportation Research Record: Journal of the Transportation Research Board, No. 2148, Transportation Research Board of the National Academies, Washington, DC, 2010, pp. 1626.
        . Transportation Research Record: Journal of the Transportation Research Board, No. 2148, Transportation Research Board of the National Academies , 16 - 26
    3. 3)
      • S.Y. Sohn , H. Shin .
        3. Sohn, S.Y., Shin, H.: ‘Pattern recognition for road traffic accident severity in Korea’, Ergonomics, 2001, 44, (1), pp. 107117.
        . Ergonomics , 1 , 107 - 117
    4. 4)
      • S.Y. Sohn , S.H. Lee .
        4. Sohn, S.Y., Lee, S.H.: ‘Data fusion, ensemble and clustering to improve the classification accuracy for the severity of road traffic accidents in Korea’, Safety Science, 2003, 41, (1), pp. 114.
        . Safety Science , 1 , 1 - 14
    5. 5)
      • T.B. Tesema , A. Abraham , C. Grosan .
        5. Tesema, T.B., Abraham, A., Grosan, C.: ‘Rule mining and classification of road traffic accidents using adaptive regression trees’, Int. J. Simul., 2005, 6, (10), pp. 8094.
        . Int. J. Simul. , 10 , 80 - 94
    6. 6)
      • L. Miranda-Moreno , L. Fu , S. Ukkusuri .
        6. Miranda-Moreno, L., Fu, L., Ukkusuri, S., et al: ‘How to incorporate accident severity and vehicle occupancy into the hot spot identification process?’. Transport. Res. Record, Washington, D.C., 2009, pp. 5360.
        . Transport. Res. Record , 53 - 60
    7. 7)
      • M. Chong , A. Abraham , M. Paprzycki .
        7. Chong, M., Abraham, A., Paprzycki, M.: ‘Traffic accident analysis using machine learning paradigms’, Informatica, 2005, 29, (1), pp. 8998.
        . Informatica , 1 , 89 - 98
    8. 8)
      • M. Hall , E. Frank , G. Holmes .
        8. Hall, M., Frank, E., Holmes, G., et al: ‘The WEKA data mining software: an update’, ACM SIGKDD Explorations Newsletter, 2009, 11, (1), pp. 1018.
        . ACM SIGKDD Explorations Newsletter , 1 , 10 - 18
    9. 9)
      • I. Rish .
        9. Rish, I.: ‘An empirical study of the naive Bayes classifier’. IJCAI 2001 workshop on empirical methods in artificial intelligence, IBM New York, 2001, vol. 3, no. 22, pp. 4146.
        . IJCAI 2001 workshop on empirical methods in artificial intelligence, IBM New York , 22 , 41 - 46
    10. 10)
      • D. Lewis .
        10. Lewis, D.: ‘Naive (Bayes) at forty: the independence assumption in information retrieval’. Machine learning: ECML, Springer Berlin Heidelberg, 1998, pp. 415.
        . Machine learning: ECML , 4 - 15
    11. 11)
      • T. Joachims . (1998)
        11. Joachims, T.: ‘Text categorization with support vector machines: learning with many relevant features’. In Claire, N., Céline, R. (Eds.): (Springer, Berlin Heidelberg, 1998), pp. 137142.
        .
    12. 12)
      • J.R. Quinlan . (2014)
        12. Quinlan, J.R.: ‘C4. 5: programs for machine learning’ (Elsevier, 2014).
        .
    13. 13)
      • R. Kohavi .
        13. Kohavi, R.: ‘A study of cross-validation and bootstrap for accuracy estimation and model selection’. IJCAI, 1995, vol. 14, no. 2, pp. 11371145.
        . IJCAI , 2 , 1137 - 1145
    14. 14)
      • V.J. Hodge , J. Austin .
        14. Hodge, V.J., Austin, J.: ‘A survey of outlier detection methodologies’, Artif. Intell. Rev., 2004, 22, (2), pp. 85126.
        . Artif. Intell. Rev. , 2 , 85 - 126
    15. 15)
      • B. Settles .
        15. Settles, B.: ‘Active learning literature survey’. University of Wisconsin, Madison, 2010, 52, (55–66), 11.
        .
    16. 16)
      • G. Schohn , D. Cohn .
        16. Schohn, G., Cohn, D.: ‘Less is more: active learning with support vector machines’. ICML, 2000, pp. 839846.
        . ICML , 839 - 846
    17. 17)
      • S. Tong , D. Koller .
        17. Tong, S., Koller, D.: ‘Support vector machine active learning with applications to text classification’, J. Mach. Learn. Res., 2001, 2, pp. 4566.
        . J. Mach. Learn. Res. , 45 - 66
    18. 18)
      • C. Campbell , N. Cristianini , A. Smola .
        18. Campbell, C., Cristianini, N., Smola, A.: ‘Query learning with large margin classifiers’. ICML, 2000, pp. 111118.
        . ICML , 111 - 118
    19. 19)
      • N. Roy , A. McCallum .
        19. Roy, N., McCallum, A.: ‘Toward optimal active learning through Monte Carlo estimation of error reduction’. ICML, Williamstown, 2001, pp. 441448.
        . ICML , 441 - 448
    20. 20)
      • D.H. Nguyen , J.D. Patrick .
        20. Nguyen, D.H., Patrick, J.D.: ‘Supervised machine learning and active learning in classification of radiology reports’, J. Am. Med. Informatics Assoc., 2014, 21, (5), pp. 893901.
        . J. Am. Med. Informatics Assoc. , 5 , 893 - 901
    21. 21)
      • T. Osugi , D. Kim , S. Scott .
        21. Osugi, T., Kim, D., Scott, S.: ‘Balancing exploration and exploitation: a new algorithm for active machine learning’. Fifth IEEE Int. Conf. on Data Mining, IEEE, November 2005, p. 8–pp.
        . Fifth IEEE Int. Conf. on Data Mining, IEEE
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0051
Loading

Related content

content/journals/10.1049/iet-its.2017.0051
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address