access icon free Performance evaluation of vehicular platoons using Webots

Safety issue of vehicular platoons remains a critical challenge and is still open for investigation. In this study, the authors propose an accurate simulation model for vehicular platoons, taking into consideration of the kinematics and dynamics aspects of the platoon and its physical constraints. A hybrid controller formed by two different longitudinal and lateral proportional–integral–derivative controllers and two operation modes at the same time is developed and simulated using Webots. By this study, the aim is to deeply study the performance of the platoon and reveal its weakness in real scenarios. The latter includes normal/degraded operating modes, different speeds, full brake scenarios and various global positioning system accuracies. Results show the efficiency of the platoon controller even in the predefined degraded mode.

Inspec keywords: mobile robots; robot dynamics; multi-robot systems; three-term control; robot kinematics; Global Positioning System

Other keywords: platoon kinematic aspect; platoon dynamic aspect; vehicular platoons; longitudinal controller; degraded operating mode; Global Positioning System; performance evaluation; physical constraints; operation modes; hybrid controller; simulation model; full-brake scenario; normal operating mode; Webots; safety issue; lateral proportional-integral-derivative controller

Subjects: Robot and manipulator mechanics; Mobile robots

References

    1. 1)
      • 20. Guerfala, E., Khalgui, M., Koubaa, A., et al: ‘Modeling and formal verification of reconfigurable vehicular platoons’. European Simulation and Modelling Conf., 2015.
    2. 2)
      • 37. Guo, G., Yue, W.: ‘Autonomous platoon control allowing range-limited sensors’, IEEE Trans. Veh. Technol., 2012, 61, (7), pp. 29012912.
    3. 3)
      • 15. Li, X., Hu, B., Chen, H., et al: ‘Multi-hop delay reduction for safety-related message broadcasting in vehicle-to-vehicle communications’, IET Commun., 2015, 9, (3), pp. 404411.
    4. 4)
      • 38. Ying, Y., Mei, T., Song, Y., et al: ‘A sliding mode control approach to longitudinal control of vehicles in a platoon’. IEEE Int. Conf. on Mechatronics and Automation (ICMA), 2014, pp. 15091514.
    5. 5)
      • 27. Huang, Z., Wu, Q., Ma, J., et al: ‘Modeling and simulation of cooperative strategies for vehicle platoon longitudinal control’. CICTP 2014: Safe, Smart, and Sustainable Multimodal Transportation Systems, Changsha, China, July 2014, pp. 498512.
    6. 6)
      • 28. Sentürk, M., Uygan, I., Meriç, C., et al: ‘Mixed cooperative adaptive cruise control for light commercial vehicles’. Systems Man and Cybernetics (SMC), Istanbul, October 2010, pp. 15061511.
    7. 7)
      • 35. Kelly, R.: ‘A tuning procedure for stable PID control of robot manipulators’, Robotics, 1995, 13, (2), pp. 141148.
    8. 8)
      • 7. Aparicio, A., Boltshauser, S., Lesemann, M., et al: ‘Status of test methods for active safety systems’ (SAE Technical Paper, 2012), p. 11.
    9. 9)
      • 26. Kita, E., Sakamoto, H., Takaue, H., et al: ‘Robot vehicle platoon experiment based on multi-leader vehicle following model’. Symp. Second Computing and Networking, Shizuoka, Japan, December 2014, pp. 491494.
    10. 10)
      • 30. Yi, G., Zhang, S., Ritter, A., et al: ‘A case study on a capsule robot in the gastrointestinal tract to teach robot programming and navigation’, IEEE Trans. Educ., 2014, 57, (2), pp. 112121.
    11. 11)
      • 2. Liu, Y., Gao, H., Xu, B., et al: ‘Autonomous coordinated control of a platoon of vehicles with multiple disturbances’, IET Control Theory Appl., 2014, 8, (18), pp. 23252335.
    12. 12)
      • 33. Wang, W.: ‘The safety and comfort control of vehicles by the separation principle of PID controller tuning’. Proc. IEEE Int. Conf. Industrial Technology, Vi a del M, March 2010, pp. 145150.
    13. 13)
      • 40. Sheikholeslam, S., Desoer, C.A.: ‘A system level study of the longitudinal control of a platoon of vehicles’, J. Dyn. Syst. Meas. Control, 1992, 114, (2), pp. 286292.
    14. 14)
      • 11. Solyom, S., Coelingh, E.: ‘Performance limitations in vehicle platoon control’, IEEE Intell. Transp. Syst. Mag., 2013, 5, (4), pp. 112120.
    15. 15)
      • 14. Ward, J., Worrall, S., Agamennoni, G., et al: ‘The Warrigal dataset: multi-vehicle trajectories and V2V communications’, IEEE Intell. Transp. Syst. Mag., 2014, 6, (3), pp. 109117.
    16. 16)
      • 43. Chen, H., Wu, N., Zhou, M.: ‘A novel method for deadlock prevention of AMS by using resource-oriented Petri nets’, Inf. Sci., 2016, 363, pp. 178189.
    17. 17)
      • 13. Ruisi, H., Andreas, F.M., Fredrik, T., et al: ‘Vehicle-to-vehicle propagation models with large vehicle obstructions’, IEEE Trans. Intell. Transp. Syst., 2014, 15, (5), pp. 22372248.
    18. 18)
      • 29. Park, C., Hong, Y., Kim, J.: ‘Evolutionary-optimized central pattern generator for stable modifiable bipedal walking’, IEEE/ASME Trans. Mechatronics, 2014, 19, (4), pp. 13741383.
    19. 19)
      • 22. Meskina, S.B., Doggaz, N., Khalgui, M., et al: ‘Multiagent framework for smart grids recovery’, IEEE Trans. Syst. Man Cybern. Syst., 2017, PP, (99), pp. 117, doi: 10.1109/TSMC.2016.2573824..
    20. 20)
      • 31. Cannon, M., Basnayake, C., Crawford, S., et al: ‘Precise GPS sensor subsystem for vehicle platoon control’. Proc. Int. Technical Meeting of the Satellite Division of the Institute of Navigation ION GPS, Portland, September 2003, pp. 213224.
    21. 21)
      • 1. Antonelli, G.: ‘Interconnected dynamic systems: an overview on distributed control’, IEEE Control Syst., 2013, 33, (1), pp. 7688.
    22. 22)
      • 12. Alsabaan, M., Naik, K., Khalifa, T.: ‘Optimization of fuel cost and emissions using V2V communications’, IEEE Trans. Intell. Transp. Syst., 2013, 14, (3), pp. 14491461.
    23. 23)
      • 18. Simonin, O., Lanoix, A., Scheuer, A., et al: ‘Specifying in B the influence/reaction model to study situated MAS: application to vehicles platooning’. First Int. Workshop on Verification and Validation of Multi-agent Models for Complex Systems, 2011, p. 15.
    24. 24)
      • 9. Ghasemi, A., Kazemi, R., Azadi, S.: ‘Stable decentralized control of a platoon of vehicles with heterogeneous information feedback’, IEEE Trans. Veh. Technol., 2013, 62, (9), pp. 42994308.
    25. 25)
      • 5. Robinson, T., Chan, E., Coelingh, E.: ‘Operating platoons on public motorways: an introduction to the SARTRE platooning programme’. Proc. of the 17th ITS World Congress, Busan, Korea, October 2010, p. 12.
    26. 26)
      • 34. Malki, H.A., Misir, D., Feigenspan, D., et al: ‘Fuzzy PID control of a flexible-joint robot arm with uncertainties from time-varying loads’, IEEE Trans. Control Syst. Technol., 1997, 5, (3), pp. 371378.
    27. 27)
      • 36. Bergenhem, C., Huang, Q., Benmimoun, A., et al: ‘Challenges of platooning on public motorways’. Proc. World Congress on Intelligent Transport Systems, 2010, pp. 112.
    28. 28)
      • 21. Ben Salem, M.O., Mosbahi, O., Khalgui, , et al: ‘BROMETH: methodology to design safe reconfigurable medical robotic systems’, Int. J. Med. Robot. Comput. Assist. Surg., 2016, DOI: 10.1002/rcs.1786.
    29. 29)
      • 17. EL-Zaher, M., Contet, J.M., Gruer, P., et al: ‘Towards a compositional verification approach for multi-agent systems: application to platoon system’. Proc. of First Int. Workshop on Verification and Validation of Multi-agent Models for Complex Systems (V2CS), 2011.
    30. 30)
      • 4. Casimiro, A., Kaiser, J., Schiller, E.M., et al: ‘The KARYON project: predictable and safe coordination in cooperative vehicular systems’. Proc. Int. Conf. Dependable Systems and Networks Workshop, Budapest, 2013, pp. 112.
    31. 31)
      • 19. Karoui, O., Khalgui, M., Koubâa, A., et al: ‘Dual mode for vehicular platoon safety: simulation and formal verification’, Inf. Sci., 2017, 402, pp. 216232.
    32. 32)
      • 6. Chan, E., Gilhead, P., Jelinek, P., et al: ‘Cooperative control of SARTRE automated platoon vehicles’. Proc. of the 19th ITS World Congress, Vienna, October 2012, pp. 2226.
    33. 33)
      • 23. Gasmi, M., Mosbahi, O., Khalgui, M., et al: ‘R-node: new pipelined approach for an effective reconfigurable wireless sensor node’, IEEE Trans. Syst. Man Cybern. Syst., 2016, PP, (99), pp. 114, doi: 10.1109/TSMC.2016.2625817.
    34. 34)
      • 16. EL-Zaher, M., Contet, J.M., Gruer, P., et al: ‘Compositional verification for reactive multi-agent systems applied to platoon non-collision verification’, Stud. Inf. Univ., 2012, 10, (3), pp. 119141.
    35. 35)
      • 25. Grichi, H., Mosbahi, O., Khalgui, M., et al: ‘New power-oriented methodology for dynamic resizing and mobility of reconfigurable wireless sensor networks’, IEEE Trans. Syst. Man Cybern. Syst., 2017, PP, (99), pp. 111, doi: 10.1109/TSMC.2016.2645401.
    36. 36)
      • 10. van Nunen, E., Kwakkernaat, M.R., Ploeg, J., et al: ‘Cooperative competition for future mobility’, IEEE Trans. Intell. Transp. Syst., 2012, 13, (3), pp. 10181025.
    37. 37)
      • 42. Chen, Y., Li, Z., Barkaoui, K., et al: ‘Compact supervisory control of discrete event systems by Petri nets with data inhibitor arcs’, IEEE Trans. Syst. Man Cybern., 2017, 47, (2), pp. 364379.
    38. 38)
      • 41. Chen, Y., Li, Z., Al-Ahmari, A., et al: ‘Deadlock recovery for flexible manufacturing systems modeled with Petri nets’, Inf. Sci., 2017, 381, pp. 290303.
    39. 39)
      • 8. Ploeg, J., Shukla, D.P., van de Wouw, N., et al: ‘Controller synthesis for string stability of vehicle platoons’, IEEE Trans. Intell. Transp. Syst., 2014, 15, (2), pp. 854865.
    40. 40)
      • 39. Zheng, Y., Li, S.E., Wang, J., et al: ‘Stability and scalability of homogeneous vehicular platoon: study on the influence of information flow topologies’, IEEE Trans. Intell. Transp. Syst., 2016, 17, (1), pp. 1426.
    41. 41)
      • 32. Ioannou, P., Xu, Z.: ‘Throttle and brake control systems for automatic vehicle following’, J. Intell. Transp. Syst., 1994, 1, (4), pp. 345377.
    42. 42)
      • 24. Grichi, H., Mosbahi, O., Khalgui, M., et al: ‘RWiN: new methodology for the development of reconfigurable WSN’, IEEE Trans. Autom. Sci. Eng., 2017, 14, (1), pp. 109125.
    43. 43)
      • 3. Németh, B., Gáspár, P.: ‘Optimised speed profile design of a vehicle platoon considering road inclinations’, IEEE Trans. Intell. Transp. Syst., 2014, 8, (3), pp. 200208.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0036
Loading

Related content

content/journals/10.1049/iet-its.2017.0036
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading