Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Context-sensitive, first-principles approach to bicycle speed estimation

Bicycle speed estimation is important for geometric design, traffic signal operations, microsimulation models, and health and safety assessment, among other applications. Bicycle speeds can vary greatly with the characteristics and power output of the rider and with travel conditions, especially road grade. This study presents a mathematical framework to address the non-trivial and practical problem of estimating bicycle free-flow speeds in a way that is sensitive to cyclist and roadway attributes. A closed expression is derived from first principles to determine speed from bicyclist power output. The method is extended to the problem of speed estimation for bicycles with limited gearing. Results are consistent with speed surveys in the literature. Application of the method to clearance interval calculation demonstrates the importance of context-sensitive bicycle speed estimation for advanced traffic signal systems.

References

    1. 1)
      • 9. Mueller, N., Rojas-Rueda, D., Cole-Hunter, T., et al: ‘Health impact assessment of active transportation: a systematic review’, Preventive Med., 2015, 76, pp. 103114.
    2. 2)
      • 2. CROW: ‘Design manual for bicycle traffic’. Centre for Research and Contract Standardisation in Civil Engineering, The Netherlands, 2007.
    3. 3)
      • 17. Wilson, D.G.: ‘Bicycling science’ (MIT Press, Cambridge, MA, 2004, 3rd edn.).
    4. 4)
      • 15. Jin, S., Qu, X., Zhou, D., et al: ‘Estimating cycleway capacity and bicycle equivalent unit for electric bicycles’, Transp. Res. A, Policy Pract., 2015, 77, pp. 225248.
    5. 5)
      • 8. Sener, I.N., Eluru, N., Bhat, C.R.: ‘An analysis of bicycle route choice preferences in Texas, US’, Transportation, 2009, 36, (5), pp. 511539.
    6. 6)
      • 21. Bigazzi, A.Y., Figliozzi, M.A.: ‘Dynamic ventilation and power output of urban bicyclists’, Transp. Res. Rec., J. Transp. Res. Board, 2015, 2520, pp. 5260.
    7. 7)
      • 25. Gross, A.C., Kyle, C.R., Malewicki, D.J.: ‘The aerodynamics of human-powered land vehicles’, Sci. Am., 1983, 249, (6), pp. 142152.
    8. 8)
      • 26. Launer, L.J., Harris, T.: ‘Weight, height and body mass index distributions in geographically and ethnically diverse samples of older persons. Ad hoc committee on the statistics of anthropometry and aging’, Age Ageing, 1996, 25, (4), pp. 300306.
    9. 9)
      • 22. Chowdhury, H., Alam, F.: ‘Bicycle aerodynamics: an experimental evaluation methodology’, Sports Eng., 2012, 15, (2), pp. 7380.
    10. 10)
      • 6. Twaddle, H., Schendzielorz, T., Fakler, O.: ‘Bicycles in urban areas’, Transp. Res. Rec. J. Transp. Res. Board, 2014, 2434, pp. 140146.
    11. 11)
      • 10. Rojas-Rueda, D., de Nazelle, A., Teixidó, O., et al: ‘Health impact assessment of increasing public transport and cycling use in Barcelona: a morbidity and burden of disease approach’, Preventive Med., 2013, 57, (5), pp. 573579.
    12. 12)
      • 16. Burke, E.: ‘High-tech cycling’ (Human Kinetics, 2003).
    13. 13)
      • 7. Broach, J., Dill, J., Gliebe, J.: ‘Where do cyclists ride? A route choice model developed with revealed preference GPS data’, Transp. Res. A, Policy Pract., 2012, 46, (10), pp. 17301740.
    14. 14)
      • 11. Bernardi, S., Rupi, F.: ‘An analysis of bicycle travel speed and disturbances on off-street and on-street facilities’, Transp. Res. Procedia, 2015, 5, pp. 8294.
    15. 15)
      • 20. Knight, R.: ‘The bicyclist's paradox’, Phys. Teach., 2008, 46, (5), pp. 275279.
    16. 16)
      • 23. Faria, E.W., Parker, D.L., Faria, I.E.: ‘The science of cycling: factors affecting performance – part 2’, Sports Med., 2005, 35, (4), pp. 313337.
    17. 17)
      • 1. National Association of City Transportation Officials: ‘Urban bikeway design guide’ (Island Press, 2014, 2nd edn.).
    18. 18)
      • 12. El-Geneidy, A.M., Krizek, K.J., Iacono, M.J.: ‘Predicting bicycle travel speeds along different facilities using GPS data: a proof-of-concept model’. Presented at the Transportation Research Board 86th Annual Meeting, 2007.
    19. 19)
      • 14. Jiang, R., Hu, M.-B., Wu, Q.-S., et al: ‘Traffic dynamics of bicycle flow: experiment and modeling’, Transp. Sci., 2016. Advance online publication. http://dx.doi.org/10.1287/trsc.2016.0690.
    20. 20)
      • 3. Parkin, J., Rotheram, J.: ‘Design speeds and acceleration characteristics of bicycle traffic for use in planning, design and appraisal’, Transp. Policy, 2010, 17, (5), pp. 335341.
    21. 21)
      • 4. Taylor, D., Mahmassani, H.: ‘Coordinating traffic signals for bicycle progression’, Transp. Res. Rec. J. Transp. Res. Board, 2000, 1705, pp. 8592.
    22. 22)
      • 19. Fintelman, D.M., Sterling, M., Hemida, H., et al: ‘The effect of crosswinds on cyclists: an experimental study’, Procedia Eng., 2014, 72, pp. 720725.
    23. 23)
      • 5. Ismail, K., Sayed, T.: ‘Risk-based framework for accommodating uncertainty in highway geometric design’, Can. J. Civ. Eng., 2009, 36, (5), pp. 743753.
    24. 24)
      • 24. Martin, J.C., Milliken, D.L., Cobb, J.E., et al: ‘Validation of a mathematical model for road cycling power’, J. Appl. Biomech., 1998, 14, pp. 276291.
    25. 25)
      • 18. Olds, T.S., Norton, K.I., Lowe, E.L., et al: ‘Modeling road-cycling performance’, J. Appl. Physiol., 1995, 78, (4), pp. 15961611.
    26. 26)
      • 13. May, A.: ‘Traffic flow fundamentals’ (Prentice-Hall, 1989).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0012
Loading

Related content

content/journals/10.1049/iet-its.2017.0012
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address