access icon free Electric vehicle-routing problem with charging demands and energy consumption

An electric vehicle-routing problem (EVRP) is developed to settle some operation distribution troubles such as battery energy limitations and difficulties in finding charging stations for electric vehicles (EVs). Meanwhile, in view of realistic traffic conditions and features of EVs, energy consumption with travel speed and cargo load is considered in the EVRP model. Moreover, to avoid the depletion of all battery power and ensure safe operation, EVs with insufficient battery power can be recharged at charging stations many times in transit. In conclusion, a large, realistic case study with the road network of Beijing urban, 100 customers and 30 charging stations is conducted to test the performance of the model and obtain an optimal operation scheme consisted of the routes, charging plan and driving paths. The EVRP model is solved based on the hybrid genetic algorithm to get the routes and charging plan. The dynamic Dijkstra algorithm with some improvements over the classical Dijkstra algorithm is applied to find the driving paths called the most energy efficient paths between any two adjacent visited nodes in the routes.

Inspec keywords: energy consumption; vehicle routing; electric vehicles; genetic algorithms; electric vehicle charging

Other keywords: Beijing; energy consumption; dynamic Dijkstra algorithm; road network; charging plan; driving paths; charging demands; hybrid genetic algorithm; charging stations; electric vehicle-routing problem; EVRP model

Subjects: Systems theory applications in transportation; Optimisation techniques

References

    1. 1)
      • 1. Dekker, R., Bloemhof, J., Mallidis, I.: ‘Operations research for green logistics – an overview of aspects, issues, contributions and challenges’, Eur. J. Oper. Res., 2012, 219, (3), pp. 671679.
    2. 2)
      • 14. Goeke, D., Schneider, M.: ‘Routing a mixed fleet of electric and conventional vehicles’, Eur. J. Oper. Res., 2015, 245, (1), pp. 8199.
    3. 3)
      • 6. Ubeda, S., Arcelus, F.J., Faulin, J.: ‘Green logistics at eroski: a case study’, Int. J. Prod. Econ., 2011, 131, (1), pp. 4451.
    4. 4)
      • 28. Wu, X., Freese, D., Cabrera, A., et al: ‘Electric vehicles’ energy consumption measurement and estimation’, Transp. Res. D, Transp. Environ., 2015, 34, pp. 5267.
    5. 5)
      • 40. ‘Beijing Municipal Commission of Development and Reform’, http://www.bjpc.gov.cn/zwxx/tztg/201601/P020160105602466219360.pdf, access 2015.
    6. 6)
      • 33. Sweda, T.M., Klabjan, D.: ‘Finding minimum-cost paths for electric vehicles’. IEEE Int. Electric Vehicle Conf., Greenville, SC, USA, March 2012.
    7. 7)
      • 8. Morrow, K.U.S.: ‘Department of energy vehicle technologies program – advanced vehicle testing activity – plug-in hybrid electric vehicle charging infrastructure review’. Office of Scientific & Technical Information Technical Reports, 2008.
    8. 8)
      • 30. Eshani, M., Gao, Y., Gay, S.E., et al: ‘Modern electric, hybrid electric and fuel cell vehicles: fundamentals, theory, and design’ (Boca Raton, FL: CRC, 2005).
    9. 9)
      • 10. Hiermann, G., Puchinger, J., Ropke, S., et al: ‘The electric fleet size and mix vehicle routing problem with time windows and recharging stations’, Eur. J. Oper. Res., 2016, 252, (3), pp. 9951018.
    10. 10)
      • 15. Schneider, M., Stenger, A., Goeke, D.: ‘The electric vehicle routing problem with time windows and recharging stations’, Transp. Sci., 2014, 48, (4), pp. 500520.
    11. 11)
      • 23. Li, J.: ‘Transit bus scheduling with limited energy’, Transp. Sci., 2013, 48, (4), pp. 521539.
    12. 12)
      • 22. Almoustafa, S., Hanafi, S., Mladenovi, N.: ‘New exact method for large asymmetric distance-constrained vehicle routing problem’, Eur. J. Oper. Res., 2013, 226, (3), pp. 386394.
    13. 13)
      • 17. Worley, O., Klabjan, D., Sweda, T.M.: ‘Simultaneous vehicle routing and charging station siting for commercial electric vehicles’. IEEE Int. Electric Vehicle Conf., Greenville, SC, USA, March 2012.
    14. 14)
      • 2. Kleindorfer, P.R., Singhal, K., Wassenhove, L.N.V.: ‘Sustainable operations management’, Prod. Oper. Manage., 2005, 14, (4), pp. 482492.
    15. 15)
      • 5. Srivastava, S.K.: ‘Green supply chain management: a state-of-the-art literature review’, Int. J. Manage. Rev., 2007, 9, (1), pp. 5380.
    16. 16)
      • 34. Eisner, J., Funke, S., Storandt, S., et al: ‘Optimal route planning for electric vehicles in large networks’. Twenty-Fifth AAAI Conf. Artificial Intelligence, San Francisco, California, August 2011, pp. 11081113.
    17. 17)
      • 35. Artmeier, A., Haselmayr, J., Leucker, M., et al: ‘The shortest path problem revisited: optimal routing for electric vehicles’, Lect. Notes Comput. Sci., 2010, 6359, (6), pp. 309316.
    18. 18)
      • 24. Wang, H., Shen, J.: ‘Heuristic approaches for solving transit vehicle scheduling problem with route and fueling time constraints’, Appl. Math. Comput., 2007, 190, (2), pp. 12371249.
    19. 19)
      • 21. Nagarajan, V., Ravi, R.: ‘Approximation algorithms for distance constrained vehicle routing problems’, Networks, 2012, 59, (2), pp. 209214.
    20. 20)
      • 26. Maia, R., Silva, M., Araújo, R., et al: ‘Electric vehicle simulator for energy consumption studies in electric mobility systems’. Integrated and Sustainable Transportation System (FISTS), Vienna, Austria, June 2011, pp. 227232.
    21. 21)
      • 31. ‘Ford's electric vehicle technology: How EVs work’, http://www.ford.com/technology/electric/howevswork/, accessed 2013.
    22. 22)
      • 36. Fontana, M.W.: ‘Optimal routes for electric vehicles facing uncertainty, congestion, and energy constraints’. Massachusetts Institute of Technology, 2013.
    23. 23)
      • 29. Husain, I.: ‘Electric and hybrid vehicles: design fundamentals’ (CRC press, 2011).
    24. 24)
      • 20. Li, C., Simchi-Levi, D., Desrochers, M.: ‘On the distance constrained vehicle routing problem’, Oper. Res., 1992, 40, (4), pp. 790799.
    25. 25)
      • 19. Laporte, G., Desrochers, M., Nobert, Y.: ‘Two exact algorithms for the distance-constrained vehicle routing problem’, Networks, 1984, 14, (1), pp. 161172.
    26. 26)
      • 3. McKinnon, A.: ‘Green logistics: improving the environmental sustainability of logistics’, Transp. Rev. A Transnat'l L. Transdisciplinary J., 2001, 31, (4), pp. 547548.
    27. 27)
      • 25. Mehar, S., Senouci, S.M., Remy, G.: ‘EV-planning: electric vehicle itinerary planning’. Int. Conf. Smart Communications in Network Technologies, Paris, France, June 2013, pp. 15.
    28. 28)
      • 4. Sbihi, A., Eglese, R.W.: ‘Combinatorial optimization and green logistics’, Gen. Inf., 2007, 175, (1), pp. 159175.
    29. 29)
      • 18. Conrad, R.G., Figliozzi, M.A.: ‘The recharging vehicle routing problem’. Proc. Industrial Engineering Research Conf., 2011.
    30. 30)
      • 16. Erdogan, S., Miller-Hooks, E.: ‘A green vehicle routing problem’, Transp. Res. E, Logist. Transp. Rev., 2012, 48, pp. 1001114.
    31. 31)
      • 13. Yang, J., Sun, H.: ‘Battery swap station location-routing problem with capacitated electric vehicles’, Comput. Oper. Res., 2015, 55, (C), pp. 217232.
    32. 32)
      • 7. Axsen, J., Kurani, K.S., Burke, A.: ‘Are batteries ready for plug-in hybrid buyers?’, Transp. Policy, 2010, 17, pp. 173182.
    33. 33)
      • 27. Howey, D.A., Martinez-Botas, R.F., Cussons, B., et al: ‘Comparative measurements of the energy consumption of 51 electric, hybrid and internal combustion engine vehicles’, Transp. Res. D, Transp. Environ., 2011, 16, (6), pp. 459464.
    34. 34)
      • 32. He, F., Yin, Y., Lawphongpanich, S.: ‘Network equilibrium models with battery electric vehicles’, Transp. Res. B, Methodol., 2014, 67, (3), pp. 306319.
    35. 35)
      • 39. Dijkstra, E.W.: ‘A note on two problems in connexion with graphs’, Numer. Math., 1959, 1, (1), pp. 269271.
    36. 36)
      • 9. Keskin, M., Çatay, B.: ‘Partial recharge strategies for the electric vehicle routing problem with time windows’, Transp. Res. C, Emerg. Technol., 2016, 65, pp. 111127.
    37. 37)
      • 38. Adler, J.D., Mirchandani, P.B., Xue, G., et al: ‘The electric vehicle shortest-walk problem with battery exchanges’, Netw. Spat. Econ., 2016, 16, (1), pp. 155173.
    38. 38)
      • 12. Lin, J., Zhou, W., Wolfson, O.: ‘Electric vehicle routing problem’, Transp. Res. Procedia, 2016, 12, pp. 508521.
    39. 39)
      • 11. Desaulniers, G., Errico, F., Irnich, S., et al: ‘Exact algorithms for electric vehicle-routing problems with time windows’, Oper. Res., 2016, 64, (6), pp. 13881405.
    40. 40)
      • 37. Kobayashi, Y., Kiyama, N., Aoshima, H., et al: ‘A route search method for electric vehicles in consideration of range and locations of charging stations’. IEEE Intelligent Vehicles Symp., Baden-Baden, Germany, June 2011, pp. 920925.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0008
Loading

Related content

content/journals/10.1049/iet-its.2017.0008
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading