http://iet.metastore.ingenta.com
1887

access icon openaccess Destination and route choice models for bidirectional pedestrian flow based on the social force model

  • HTML
    299.3603515625Kb
  • PDF
    3.4090652465820312MB
  • XML
    232.013671875Kb
Loading full text...

Full text loading...

/deliver/fulltext/iet-its/11/9/IET-ITS.2016.0333.html;jsessionid=kg8s8kdqeoo7.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-its.2016.0333&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Helbing, D., Molnar, P.: ‘Social force model for pedestrian dynamics’, Phys. Rev. E, 1995, 51, (5), pp. 42824286.
    2. 2)
      • 2. Yu, W.J., Chen, R., Dong, L.Y., et al: ‘Centrifugal force model for pedestrian dynamics’, Phys. Rev. E, 2005, 72, (2), p. 026112.
    3. 3)
      • 3. Parisi, D.R., Dorso, C.O.: ‘Morphological and dynamical aspects of the room evacuation process’, Phys. A, Stat. Mech. Appl., 2007, 385, (1), pp. 343355.
    4. 4)
      • 4. Kirik, E.S.: ‘The shortest time and/or the shortest path strategies in a CA FF pedestrian dynamics model’, J. Siberian Fed. Univ. Math. Phys., 2009, 2, (3), pp. 271278.
    5. 5)
      • 5. Hoogendoorn, S.P., Bovy, P.H., Daamen, W.: ‘Microscopic pedestrian way finding and dynamics modelling’, Pedestrian Evacuation Dyn., 2002, pp. 123154.
    6. 6)
      • 6. Geraerts, R., Overmars, M.H.: ‘The corridor map method: a general framework for real-time high-quality path planning’, Comput. Animat. Virtual Worlds, 2007, 18, (2), pp. 107119.
    7. 7)
      • 7. Wagouma, A.U.K., Seyfrieda, A., Holla, S.: ‘Modeling the dynamic route choice of pedestrians to assess the criticality of building evacuation’, Adv. Complex Syst., 2012, 15, (07), p. 1250029.
    8. 8)
      • 8. Kretz, T., GROßE, A.S., Hengst, L., et al: ‘Vortisch. quickest routes in simulations of pedestrians’, Adv. Complex Syst., 2011, 14.05, pp. 733759.
    9. 9)
      • 9. Patil, S.J., Berg, S., Curtis, M., et al: ‘Directing crowd simulations using navigation fields’, IEEE Trans. Vis. Comput. Graph., 2011, 17, (2), pp. 244254.
    10. 10)
      • 10. Treuille, A., Cooper, S., Popović, Z.: ‘Continuum crowds’, ACM Trans. Graph. (TOG), 2006, 25, (3), ACM, pp. 11601168.
    11. 11)
      • 11. Asano, M., Iryo, T., Kuwahara, M.: ‘Microscopic pedestrian simulation model combined with a tactical model for route choice behaviour’, Transp. Res. C, Emerging Technol., 2010, 18, (6), pp. 842855.
    12. 12)
      • 12. Guo, R.Y., Huang, H.J.: ‘A mobile lattice gas model for simulating pedestrian evacuation’, Phys. A, Stat. Mech. Appl., 2008, 387, (2), pp. 580586.
    13. 13)
      • 13. Saboia, P., Goldenstein, S.: ‘Crowd simulation: applying mobile grids to the social force model’, Vis. Comput., 2012, 28, (10), pp. 10391048.
    14. 14)
      • 14. Zeng, W., Chen, P., Nakamura, H., et al: ‘Application of social force model to pedestrian behavior analysis at signalized crosswalk’, Transp. Res. C, Emerging Technol., 2014, 40, pp. 143159.
    15. 15)
      • 15. Jiang, S., Wang, D.H., Chen, Y.H., et al: ‘Pedestrian movement trajectory reappearance and crossing feature expression based on video processing’, J. Southeast Univ., Nat. Sci. Ed., 2012, 42, (6), pp. 12331237.
    16. 16)
      • 16. Anvari, B., Bell, M.G.H., Sivakumar, A., et al: ‘Modelling shared space users via rule-based social force model’, Transp. Res. C, Emerging Technol., 2015, 51, pp. 83103.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2016.0333
Loading

Related content

content/journals/10.1049/iet-its.2016.0333
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address