Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Analysis of speed disturbances in empirical single vehicle probe data before traffic breakdown

In single vehicle probe data measured on German freeways the authors have revealed free flow→synchronised flow→free flow transitions that occur before traffic breakdown at a bottleneck occurs. Thus resulting in the formation of a congested pattern. The empirical findings of these phase transitions confirm a recent microscopic stochastic theory of traffic breakdown developed by Kerner. Only because of the recently introduced possibility of gathering larger amounts of anonymised vehicle data – including a sequence of positions of each car – the authors are able to show the phenomenon of these phase transitions in measured floating car data. This contribution reveals empirical findings in microscopic data which support and prove some of the recent theoretical findings of the nature of traffic breakdown.

References

    1. 1)
      • 29. Next Generation Simulation Programs’, http://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm. Accessed 25 September 2016.
    2. 2)
      • 22. Persaud, B.N., Yagar, S., Brownlee, R.: ‘Exploration of the breakdown phenomenon in freeway traffic’, Transp. Res. Rec., 1998, 1634, pp. 6469.
    3. 3)
      • 21. Elefteriadou, L., Roess, R.P., McShane, W.R.: ‘Probabilistic nature of breakdown at freeway merge junctions’, Transp. Res. Rec., 1995, 1484, pp. 8089.
    4. 4)
      • 3. Elefteriadou, L.: ‘An introduction to traffic flow theory’ (Springer, Berlin, 2014), Springer optimization and its applications, vol. 84.
    5. 5)
      • 26. Kerner, B.S.: ‘Breakdown in traffic networks: fundamentals of transportation science’ (Springer, Berlin, 2017).
    6. 6)
      • 17. Laval, J.A., Toth, C.S., Zhou, Y.: ‘A parsimonious model for the formation of oscillations in car-following models’, Transp. Res. B, Methodol., 2014, 70, pp. 228238.
    7. 7)
      • 16. Chen, D., Laval, J.A., Zheng, Z., et al: ‘A behavioral car-following model that captures traffic oscillations’, Transp. Res. B, Methodol., 2012, 46, pp. 744761.
    8. 8)
      • 1. Gartner, N.H., Messer, C.J., Rathi, A.K. (Eds): ‘Traffic flow theory: a state-of-the-art report’ (Transportation Research Board, Washington, DC, 2001).
    9. 9)
      • 6. Koshi, M., Iwasaki, M., Ohkura, I.: ‘Some findings and an overview on vehicular flow characteristics’, in Hurdle, V.F. (Ed.): ‘Proc. 8th Int. Symp. transportation and traffic theory’ (University of Toronto Press, Toronto, Ontario, 1983), p. 403.
    10. 10)
      • 8. Treiterer, J.: ‘Investigation of traffic dynamics by aerial photogrammetry techniques’, Transportation Research Center, Department of Civil Engineering, Ohio State University, 1975.
    11. 11)
      • 13. Jiang, R., Hu, M.B., Zhang, H.M., et al: ‘On some experimental features of car-following behavior and how to model them’, Transp. Res. B, Methodol., 2015, 80, pp. 338354.
    12. 12)
      • 30. Kerner, B.S., Koller, M., Klenov, S.L., et al: ‘The physics of empirical nuclei for spontaneous traffic breakdown in free flow at highway bottlenecks’, Physica A, 2015, 438, pp. 365397.
    13. 13)
      • 11. Kerner, B.S., Rehborn, H., Aleksic, M., et al: ‘Recognition and tracking of spatial-temporal congested traffic patterns on freeways’, Transp. Res. C, Emerg. Technol., 2004, 12, pp. 369400.
    14. 14)
      • 2. Gazis, D.C.: ‘Traffic theory’ (Springer, Berlin, 2002).
    15. 15)
      • 28. Kerner, B.S., Rehborn, H., Schäfer, R.P., et al: ‘Traffic dynamics in empirical probe vehicle data studied with three-phase theory: spatiotemporal reconstruction of traffic phases and generation of jam warning messages’, Physica A, 2013, 392, (1), pp. 221251.
    16. 16)
      • 23. Brilon, W., Geistefeldt, J., Regler, M.: ‘Reliability of freeway traffic flow: a stochastic concept of capacity’, in Mahmassani, H.S. (Ed.): ‘Proc. 16th Int. Symp. transportation and traffic theory’ (Elsevier Science, Amsterdam, 2005).
    17. 17)
      • 24. Elefteriadou, L., Kondyli, A., Brilon, W., et al: ‘Enhancing ramp metering algorithms with the use of probability of breakdown models’, J. Transp. Eng., 2014, 140, (4), p. 04014003.
    18. 18)
      • 25. Kerner, B.S.: ‘Failure of classical traffic flow theories: stochastic highway capacity and automatic driving’, Physica A, 2016, 450, pp. 700747.
    19. 19)
      • 9. Herman, R., Montroll, E.W., Potts, R.B., et al: ‘Traffic dynamics: analysis of stability in car following’, Oper. Res., 1959, 7, (1), pp. 86106.
    20. 20)
      • 18. Yang, B., Monterola, C.: ‘Efficient intersection control for minimally guided vehicles: a self-organised and decentralised approach’, Transp. Res. C, Emerg. Technol., 2016, 72, pp. 283305.
    21. 21)
      • 19. Hall, F.L., Agyemang-Duah, K.: ‘Freeway capacity drop and the definition of capacity’, Transp. Res. Rec., 1991, 1320, pp. 9198.
    22. 22)
      • 5. Kerner, B.S.: ‘Introduction to modern traffic flow theory and control’ (Springer, Berlin, New York, 2009).
    23. 23)
      • 27. Kerner, B.S.: ‘Microscopic theory of traffic-flow instability governing traffic breakdown at highway bottlenecks: growing wave of increase in speed in synchronized flow’, Phys. Rev. E, 2015, 92, (6), p. 062827.
    24. 24)
      • 14. Tian, J.-F., Jiang, R., Jia, B., et al: ‘Empirical analysis and simulation of the concave growth pattern of traffic oscillations’, Transp. Res. B, Methodol., 2016, 93, pp. 338354.
    25. 25)
      • 12. Zheng, Z., Ahn, S., Chen, D., et al: ‘Freeway traffic oscillations: microscopic analysis of formations and propagations using wavelet transform’, Procedia Social Behav. Sci., 2011, 17, pp. 717731.
    26. 26)
      • 4. Kerner, B.S.: ‘The physics of traffic’ (Springer, Berlin, New York, 2004).
    27. 27)
      • 7. Edie, L.C., Foote, R.S.: ‘Traffic flow in tunnels’, Highway Research Board Proc., 1958, 37, pp. 334344.
    28. 28)
      • 20. Banks, J.H.: ‘Flow processes at a freeway bottleneck’, Transp. Res. Rec., 1990, 1297, pp. 2028.
    29. 29)
      • 15. Chen, D., Laval, J.A., Ahn, S., et al: ‘Microscopic traffic hysteresis in traffic oscillations: a behavioral perspective’, Transp. Res. B, Methodol., 2012, 46, pp. 14401453.
    30. 30)
      • 10. Gazis, D.C., Herman, R., Rothery, R.W.: ‘Nonlinear follow-the-leader models of traffic flow’, Oper. Res., 1961, 9, (4), pp. 545567.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2016.0315
Loading

Related content

content/journals/10.1049/iet-its.2016.0315
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address