http://iet.metastore.ingenta.com
1887

Analysis of speed disturbances in empirical single vehicle probe data before traffic breakdown

Analysis of speed disturbances in empirical single vehicle probe data before traffic breakdown

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In single vehicle probe data measured on German freeways the authors have revealed free flow→synchronised flow→free flow transitions that occur before traffic breakdown at a bottleneck occurs. Thus resulting in the formation of a congested pattern. The empirical findings of these phase transitions confirm a recent microscopic stochastic theory of traffic breakdown developed by Kerner. Only because of the recently introduced possibility of gathering larger amounts of anonymised vehicle data – including a sequence of positions of each car – the authors are able to show the phenomenon of these phase transitions in measured floating car data. This contribution reveals empirical findings in microscopic data which support and prove some of the recent theoretical findings of the nature of traffic breakdown.

References

    1. 1)
      • N.H. Gartner , C.J. Messer , A.K. Rathi . (2001)
        1. Gartner, N.H., Messer, C.J., Rathi, A.K. (Eds): ‘Traffic flow theory: a state-of-the-art report’ (Transportation Research Board, Washington, DC, 2001).
        .
    2. 2)
      • D.C. Gazis . (2002)
        2. Gazis, D.C.: ‘Traffic theory’ (Springer, Berlin, 2002).
        .
    3. 3)
      • L. Elefteriadou . (2014)
        3. Elefteriadou, L.: ‘An introduction to traffic flow theory’ (Springer, Berlin, 2014), Springer optimization and its applications, vol. 84.
        .
    4. 4)
      • B.S. Kerner . (2004)
        4. Kerner, B.S.: ‘The physics of traffic’ (Springer, Berlin, New York, 2004).
        .
    5. 5)
      • B.S. Kerner . (2009)
        5. Kerner, B.S.: ‘Introduction to modern traffic flow theory and control’ (Springer, Berlin, New York, 2009).
        .
    6. 6)
      • M. Koshi , M. Iwasaki , I. Ohkura . (1983)
        6. Koshi, M., Iwasaki, M., Ohkura, I.: ‘Some findings and an overview on vehicular flow characteristics’, in Hurdle, V.F. (Ed.): ‘Proc. 8th Int. Symp. transportation and traffic theory’ (University of Toronto Press, Toronto, Ontario, 1983), p. 403.
        .
    7. 7)
      • L.C. Edie , R.S. Foote .
        7. Edie, L.C., Foote, R.S.: ‘Traffic flow in tunnels’, Highway Research Board Proc., 1958, 37, pp. 334344.
        . Highway Research Board Proc. , 334 - 344
    8. 8)
      • J. Treiterer .
        8. Treiterer, J.: ‘Investigation of traffic dynamics by aerial photogrammetry techniques’, Transportation Research Center, Department of Civil Engineering, Ohio State University, 1975.
        .
    9. 9)
      • R. Herman , E.W. Montroll , R.B. Potts .
        9. Herman, R., Montroll, E.W., Potts, R.B., et al: ‘Traffic dynamics: analysis of stability in car following’, Oper. Res., 1959, 7, (1), pp. 86106.
        . Oper. Res. , 1 , 86 - 106
    10. 10)
      • D.C. Gazis , R. Herman , R.W. Rothery .
        10. Gazis, D.C., Herman, R., Rothery, R.W.: ‘Nonlinear follow-the-leader models of traffic flow’, Oper. Res., 1961, 9, (4), pp. 545567.
        . Oper. Res. , 4 , 545 - 567
    11. 11)
      • B.S. Kerner , H. Rehborn , M. Aleksic .
        11. Kerner, B.S., Rehborn, H., Aleksic, M., et al: ‘Recognition and tracking of spatial-temporal congested traffic patterns on freeways’, Transp. Res. C, Emerg. Technol., 2004, 12, pp. 369400.
        . Transp. Res. C, Emerg. Technol. , 369 - 400
    12. 12)
      • Z. Zheng , S. Ahn , D. Chen .
        12. Zheng, Z., Ahn, S., Chen, D., et al: ‘Freeway traffic oscillations: microscopic analysis of formations and propagations using wavelet transform’, Procedia Social Behav. Sci., 2011, 17, pp. 717731.
        . Procedia Social Behav. Sci. , 717 - 731
    13. 13)
      • R. Jiang , M.B. Hu , H.M. Zhang .
        13. Jiang, R., Hu, M.B., Zhang, H.M., et al: ‘On some experimental features of car-following behavior and how to model them’, Transp. Res. B, Methodol., 2015, 80, pp. 338354.
        . Transp. Res. B, Methodol. , 338 - 354
    14. 14)
      • J.-F. Tian , R. Jiang , B. Jia .
        14. Tian, J.-F., Jiang, R., Jia, B., et al: ‘Empirical analysis and simulation of the concave growth pattern of traffic oscillations’, Transp. Res. B, Methodol., 2016, 93, pp. 338354.
        . Transp. Res. B, Methodol. , 338 - 354
    15. 15)
      • D. Chen , J.A. Laval , S. Ahn .
        15. Chen, D., Laval, J.A., Ahn, S., et al: ‘Microscopic traffic hysteresis in traffic oscillations: a behavioral perspective’, Transp. Res. B, Methodol., 2012, 46, pp. 14401453.
        . Transp. Res. B, Methodol. , 1440 - 1453
    16. 16)
      • D. Chen , J.A. Laval , Z. Zheng .
        16. Chen, D., Laval, J.A., Zheng, Z., et al: ‘A behavioral car-following model that captures traffic oscillations’, Transp. Res. B, Methodol., 2012, 46, pp. 744761.
        . Transp. Res. B, Methodol. , 744 - 761
    17. 17)
      • J.A. Laval , C.S. Toth , Y. Zhou .
        17. Laval, J.A., Toth, C.S., Zhou, Y.: ‘A parsimonious model for the formation of oscillations in car-following models’, Transp. Res. B, Methodol., 2014, 70, pp. 228238.
        . Transp. Res. B, Methodol. , 228 - 238
    18. 18)
      • B. Yang , C. Monterola .
        18. Yang, B., Monterola, C.: ‘Efficient intersection control for minimally guided vehicles: a self-organised and decentralised approach’, Transp. Res. C, Emerg. Technol., 2016, 72, pp. 283305.
        . Transp. Res. C, Emerg. Technol. , 283 - 305
    19. 19)
      • F.L. Hall , K. Agyemang-Duah .
        19. Hall, F.L., Agyemang-Duah, K.: ‘Freeway capacity drop and the definition of capacity’, Transp. Res. Rec., 1991, 1320, pp. 9198.
        . Transp. Res. Rec. , 91 - 98
    20. 20)
      • J.H. Banks .
        20. Banks, J.H.: ‘Flow processes at a freeway bottleneck’, Transp. Res. Rec., 1990, 1297, pp. 2028.
        . Transp. Res. Rec. , 20 - 28
    21. 21)
      • L. Elefteriadou , R.P. Roess , W.R. McShane .
        21. Elefteriadou, L., Roess, R.P., McShane, W.R.: ‘Probabilistic nature of breakdown at freeway merge junctions’, Transp. Res. Rec., 1995, 1484, pp. 8089.
        . Transp. Res. Rec. , 80 - 89
    22. 22)
      • B.N. Persaud , S. Yagar , R. Brownlee .
        22. Persaud, B.N., Yagar, S., Brownlee, R.: ‘Exploration of the breakdown phenomenon in freeway traffic’, Transp. Res. Rec., 1998, 1634, pp. 6469.
        . Transp. Res. Rec. , 64 - 69
    23. 23)
      • W. Brilon , J. Geistefeldt , M. Regler . (2005)
        23. Brilon, W., Geistefeldt, J., Regler, M.: ‘Reliability of freeway traffic flow: a stochastic concept of capacity’, in Mahmassani, H.S. (Ed.): ‘Proc. 16th Int. Symp. transportation and traffic theory’ (Elsevier Science, Amsterdam, 2005).
        .
    24. 24)
      • L. Elefteriadou , A. Kondyli , W. Brilon .
        24. Elefteriadou, L., Kondyli, A., Brilon, W., et al: ‘Enhancing ramp metering algorithms with the use of probability of breakdown models’, J. Transp. Eng., 2014, 140, (4), p. 04014003.
        . J. Transp. Eng. , 4 , 04014003
    25. 25)
      • B.S. Kerner .
        25. Kerner, B.S.: ‘Failure of classical traffic flow theories: stochastic highway capacity and automatic driving’, Physica A, 2016, 450, pp. 700747.
        . Physica A , 700 - 747
    26. 26)
      • B.S. Kerner . (2017)
        26. Kerner, B.S.: ‘Breakdown in traffic networks: fundamentals of transportation science’ (Springer, Berlin, 2017).
        .
    27. 27)
      • B.S. Kerner .
        27. Kerner, B.S.: ‘Microscopic theory of traffic-flow instability governing traffic breakdown at highway bottlenecks: growing wave of increase in speed in synchronized flow’, Phys. Rev. E, 2015, 92, (6), p. 062827.
        . Phys. Rev. E , 6 , 062827
    28. 28)
      • B.S. Kerner , H. Rehborn , R.P. Schäfer .
        28. Kerner, B.S., Rehborn, H., Schäfer, R.P., et al: ‘Traffic dynamics in empirical probe vehicle data studied with three-phase theory: spatiotemporal reconstruction of traffic phases and generation of jam warning messages’, Physica A, 2013, 392, (1), pp. 221251.
        . Physica A , 1 , 221 - 251
    29. 29)
      • 29. Next Generation Simulation Programs’, http://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm. Accessed 25 September 2016.
        .
    30. 30)
      • B.S. Kerner , M. Koller , S.L. Klenov .
        30. Kerner, B.S., Koller, M., Klenov, S.L., et al: ‘The physics of empirical nuclei for spontaneous traffic breakdown in free flow at highway bottlenecks’, Physica A, 2015, 438, pp. 365397.
        . Physica A , 365 - 397
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2016.0315
Loading

Related content

content/journals/10.1049/iet-its.2016.0315
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address