http://iet.metastore.ingenta.com
1887

Longitudinal speed control of autonomous vehicle based on a self-adaptive PID of radial basis function neural network

Longitudinal speed control of autonomous vehicle based on a self-adaptive PID of radial basis function neural network

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The tracking accuracy of speed plays a significant role in the autonomous vehicle's control and safety management. In this study, we presented a novel method called self-adaptive proportional integral derivative (PID) of radial basis function neural network (RBFNN-PID) which is shown with improved longitudinal speed tracking accuracy for autonomous vehicles. A forward simulation model of longitudinal speed control for autonomous vehicles is established based on the driver model of self-adaptive RBFNN-PID and the vehicle dynamics model. Based on that, we used the traditional PID and fuzzy control methods as benchmarks to demonstrate the edge of the self-adaptive RBFNN-PID control under the new European driving cycle. Simulation results show the RBFNN-PID method is significantly more precise than the comparing groups, with a reduced error in the range of [−0.369, 0.203] m/s. The vehicle performance gives better ride comfort as well. In all, self-adaptive RBFNN-PID is proven to be effective in longitudinal speed control of autonomous vehicles and significantly outperforms the other two methods.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2016.0293
Loading

Related content

content/journals/10.1049/iet-its.2016.0293
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address